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1. INTRODUCTION 

1.1. Introduction 

In this work experiments will be described that were performed to characterize the 

candidate metallic, Ising spin glass system Y1-xTbxNi2Ge2.  It will be shown that this 

system maintains its Ising behavior for all values of x and that this system is indeed a 

good spin glass.  A brief motivation for the study of Ising spin glasses is given below.  

After an overview of the physics of spin glasses, a brief discussion will be presented of 

the methods used to grow single crystals from a flux growth technique and of the 

measurements used to characterize the system.  In Chapter 5, properties of the system as a 

whole will be presented.  This will lead to a division of the system into four concentration 

(x) regimes.  Representative concentrations from three of these regimes will be looked at 

in some detail.  The fourth of these regions, which displays the hallmarks of spin glasses, 

will be studied in Chapter 6, where it will be shown that concentrations of 0.25<x<0.35 

are good spin glasses.  This will be followed by a brief conclusion and an outline of 

proposed future work. 

 

1.2. The Non-metallic Ising Spin Glass: LiHoxY1-xF4 

Recent investigations into Ising spin glasses were performed on members of the 

dilution series LiHoxY1-xF4.  These crystals are a site-diluted and isostructural derivative 

of the dipolar-coupled, insulating, Ising ferromagnet LiHoF4 which has a Tc of 1.53 K.  
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The spin glass transition temperature for the concentration x = 0.167 is Tg = 0.13 K.  It 

has been shown that the application of a transverse magnetic field, Ht, perpendicular to 

the easy axis depresses the spin glass transition temperature (Figure 1.1) (Rosenbaum, 

1991).  This effect has made it possible to study phase transition in the quantum (T=0) 

regime. 

Theoretically, this behavior is possibly described by the inclusion of a second 

term in the classical Hamiltonian for an Ising model.  This gives for N interacting spins 

∑∑ Γ−−=
N

i

x
i

N

ji

z
j

z
iijJH σσσ

,
,      (1.1) 

where the σ’s are the Pauli spin matrices, the random exchange Jij’s connect spins i and j, 

and Γ is a transverse interaction energy which is related to Ht
2. The effect of this 

transverse interaction is to allow mixing of the original eigenstates and it is beyond the 

scope of this work to describe this in detail.  The interested reader is directed to 

Rosenbaum, 1991; Wu, 1993; Rosenbaum, 1996, Brooke, 1999.  From an experimental 

 
Figure 1.1.  Depression of spin glass transition temperature, Tg, with the application of a 
transverse field, Ht (after Rosenbaum, 1991) 
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point of view it would be of interest to find a metallic system that manifests these 

properties, but with a higher Tg. 

 

1.3. A Candidate Metallic, Ising Spin Glass Y1-xTbxNi2Ge2 

We hope to investigate whether the unusual effects observed for the insulating 

spin glass LiHoxY1-xF4 are more general and can be seen in metallic systems.  A possible 

candidate for a metallic Ising spin glass is the Y1-xTbxNi2Ge2 system.  This system is a 

site-diluted and isostructural derivative of the metallic Ising antiferromagnet TbNi2Ge2 

which has an incommensurate antiferromagnetic transition at TN of 16.7 K and a 

commensurate antiferromagnetic transition at 9.6 K (Bud’ko, 1999; Islam, 1998).  Here 

the spins are coupled primarily by the RKKY interaction rather than the dipolar coupling 

of the last example.  With its higher transition temperature one might expect that any spin 

glass state that exists would also have a higher freezing temperature as compared to the 

previous compound.  This would allow measurements over a greater temperature range as 

well as at more accessible temperatures.  One potential drawback is that the CEF ground 

state for the non-Kramer’s ion, Tb3+, has not been precisely determined, though it seems 

quite likely that it is a doublet or psuedodoublet which is well separated from the 

remaining higher energy levels (Islam, 2000).  

In order to produce a site diluted, isostructural derivative of the TbNi2Ge2 

compound, a suitable nonmagnetic ion must be used.  This requires that (i) an 

isostructural, nonmagnetic compound exists, and (ii) and that the dilution process does 

not appreciably alter the crystalline environment, either the distance between atoms, or 
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the terbium point symmetry or CEF splitting.  This last condition is introduced because a 

change in lattice parameters can be considered as an application of pressure on the 

system.   

In the realm of the rare earth elements, there are four non-magnetic members, 

scandium, yttrium, lanthanum, and lutetium.  Only three of these form compounds that 

are isostructural to TbNi2Ge2, and they are yttrium, lanthanum, and lutetium.  In order to 

choose between these three we need to know how the lattice parameters change across 

the spectrum of rare earth elements for this structure.  Figure 1.2 shows the lanthanide 
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Figure 1.2  Lanthanide contraction in the RNi2Ge2 series of compounds.  Bottom half is 
lattice parameter a, and top half is lattice parameter c (after Villars, 1997). 
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contraction for the series of compounds RNi2Ge2.  From this it is clear that the best 

choice is yttrium, whose lattice parameters are almost identical to terbium.  If this was not 

the case, it would be possible to find a mixture of lanthanum and lutetium, whose 

combined lattice parameters were close to those of terbium.  Fortunately this was not 

necessary.  The search for an Ising spin glass will now be confined to the TbxY1-xNi2Ge2 

system. 

In the next chapter, a brief survey is presented of the physics of rare earth 

magnetism and the experimental characteristics of spin glasses.  This is followed by a 

summary of the methodology used to grow large single crystals from a flux technique in 

Chapter 3 and the measurement methods are outlined in Chapter 4.  Chapter 5 presents 

the results of these measurements and discusses the trends displayed by the entire series.  

Chapter 6 presents the results of detailed measurements on particular dilutions that 

clearly demonstrate spin glass behavior.   
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2. PHYSICS REVIEW 

2.1. Introduction 

In this chapter, several pertinent concepts will be introduced that will form the 

basis for understanding in this study.  First, a few general features of magnetic systems 

will be discussed, starting with a simple derivation of the Curie Law, an introduction to 

rare earth magnetism, RKKY interaction and the effects of CEF splitting of the J-

multiplet electronic ground states.  The discussion will then move on to the effects of 

disorder on magnetic systems.  Finally the concept of a spin glass will be presented, 

followed by an overview of the experimental characteristics of spin glasses.   

 

2.2. Magnetism 

2.2.1. Curie Law 

A common place to start the discussion of rare earth magnetism is with the 

derivation of the Curie law.  This law describes the magnetic susceptibility as a function 

of temperature for a free ion.  The derivation from a simple two level, s = ½, system gives 

a good understanding of the primary features of the physics underlining this law without 

going into too much mathematical detail.   

The energy levels of a spin ½ system in a magnetic field are given by (Kittel, 

1996) 

BgmBU Bs μμ =⋅−=
rr      (2.1) 
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where ms ± ½, g = 2 for an electron, B is the applied field, μB is the Bohr magneton 

whose value is approximately equal to the spin moment of a free electron.  This gives U = 

±μBB.  The energy is minimized if the magnetic moment is parallel to the field and 

maximized if the moment is antiparallel to the field.   

This system has only two levels and the equilibrium populations at a given 

temperature T are given by Boltzman statistics:  

⎟
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where N1, N2 are the populations of the lower and upper levels and N = N1 + N2 is the 

total number of atoms.  This is shown in Figure 2.1  The magnetization is the sum of the 

projection of the lower state (μB) and upper state (-μB), which becomes 

( ) ( )xN
ee
eeNNNM Bxx

xx

BB tanh21 μμμ =
+
−

=−=   (2.4) 

where x = μBB/kBT.  for x < 1(low fields, high temperatures) tanh(x) ~x, and this gives 

Tk
BNM

B

B
2μ

= .       (2.5) 

Solving for the susceptibility we find, 
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Figure 2.1.  (a) energy splitting for one electron in an applied field B directed along the 
positive z-axis.  In the low energy state the magnetic moment μB is parallel to the field.  
(b) The fractional population of a two level system as a function of temperature T and 
magnetic field B.  The magnetization is proportional to the difference between the two 
curves. 
 
 

Where C is the Curie constant for a s = ½ system.  Notice that the susceptibility has a 1/T 

dependence.   

An atom that has a total angular momentum quantum number J has 2J+1 energy 

levels spaced μBB apart.  For arbitrary J, the magnetization can be calculated in a similar 

manner to the above example and replacing ms with mJ.  This leads to a magnetization of  

( )xBJNgM JBJ μ=       (2.7) 

where x is gJJμBB/kBT and BJ is the Brillouin function which is defined as 
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and gJ is the given by the Landé equation 

1)2J(J
1)-L(L 1)S(S  1)J(J1

+
+++

+=Jg     (2.9) 

For low applied fields and high temperatures (x<1), the Brillouin function can be 

approximated by  

( ) ( )3

3
1 xx

J
JxBJ Ο+
+

≅      (2.10) 

and by letting N be Avogadro’s number the molar susceptibility becomes 

( )( ) ( )
T
C

Tk
p

Tk
gJJ

B
M

B

BeffA

B

BJA ==
+

=
∂
∂

=
3

N
3

1N 22 μμ
χ  (2.11) 

where C is the Curie constant for arbitrary J and peff is the effective number of Bohr 

magnetons.  For low temperatures and high fields (x>>1) BJ(x) approaches 1 and the 

magnetization is said to saturate at a value of Msat ≅ NAgJμB.  Figure 2.2 shows the 

theoretical magnetization of a free trivalent terbium ion as a function of B/T.  The values 

of peff and Msat are dependent upon the values of J,L, and S for a given magnetic ion.  In 

order to calculate these items one needs to know how to determine the ground state 

electronic configuration.  For rare earth ions, this is accomplished by applying Hund’s 

rules. 
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Figure 2.2.  Plot of the theoretical magnetization as a function of B/T of Tb3+ ion (solid 
line) with J=6 and gJ=1.5.  The saturated moment is 9 μB and the effective moment is 
9.72 μB.  The dashed line is the slope at low fields and  high temperatures, such that x = 
JgJμBB/kBT < 1.  It is in this region that Curie’s law holds.  For an applied field of 1 
kOe, this inequality holds for T>0.6 K 

 

2.2.2. Hund’s Rules 

In the previous section it was seen that the values of the spin angular momentum 

quantum number (S), orbital angular momentum quantum number (L), and the total 

angular momentum quantum number (J) are important for the theoretical determination of 

the magnetic properties of a material.  In an atom with a partially filled shell with an one-

electron level characterized by l.  For any give l there are 2l+1 possible values for lz and 

two possible spin orientations for each lz, giving a total of 2(2l+1) one electron levels 

(Ashcroft and Mermin, 1976).  Many possible states can be made by placing n electrons 

into these 2(2l+1) levels, and if the electrons do not interact, all these states would be 

degenerate.  Fortunately, most of this degeneracy is lifted by electron-electron Coulomb 
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interaction and by the electron spin-orbit coupling.  In most cases the lowest lying levels 

after this degeneracy is lifted can be described by applying a set of rules to the 

combination of the quantum numbers of the individual electrons.  These rules are known 

as Hund’s rules.  They are as follows (Rosenberg, 1965). 

1) The lowest energy states are those in which the electrons are arranged so that 

as many as possible have their spins parallel to each other without violating 

the Pauli exclusion principle, which is only two electrons for each value of m.  

With s= ±1/2 depending on orientation of spin, S = ∑s, the combined spin 

momentum, is calculated. 

2) The electrons with spins assigned as in 1) are distributed between the possible 

values of m so that L = ∑m, the combined orbital momentum, is a maximum. 

3) These first two rules establish the values of L and S of the lowest energy 

states.  This leaves (2L+1)(2S+1) possible lowest energy states.  This 

degeneracy is lifted by the spin-orbit coupling.  These states are characterized 

by their total angular momentum quantum number J, which runs in integer 

steps from J=|L-S| to L+S, each having a degeneracy of 2J+1.  The ground 

state has J=|L-S| if the shell is less than half full and J=L+S if the shell is more 

than half full.  If the shell is half full then L = 0 and J = S.   

In magnetic problems, usually only the (2L+1)(2S+1) lowest states determined by 

the first two rules are important, the rest lying at energies too high to be of interest.  Also, 

it is usually enough to consider only the 2J+1 lowest lying states determined by the third 

rule.  
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As an example consider terbium.  Terbium has 8 electrons in the 4f shell, so that l 

= 3.  By applying the first two rules we get 

m     3     2    1    0    -1   -2   -3    
s     ↑↓   ↑    ↑    ↑    ↑    ↑    ↑    
 
S = ∑s  = ½+½+½+½+½+½+½-½ = 6/2 = 3 
L =  ∑m = 3 +2 + 1 + 0 –1 –2 –3 + 3 = 3. 

With L = 3 and S= 3 this gives (2L+1)(2S+1) = 49 possible lowest lying energy levels.  

Since the 4f shell with 8 electrons is more than half full the lowest lying J level is given 

by J=L+S=6 with a total degeneracy of 2J+1 = 13 states.  This degeneracy is lifted by the 

application of a magnetic field into a series of equally spaced energy levels in a similar 

manner as was seen in the case of the spin ½ electron in section 2.2.1.  With S, L, J 

determined, it is now possible to determine g, peff, and Msat and the expected magnetic 

behavior as a function of field and temperature, as was seen for the case of terbium in 

Figure 2.2.  usually it is enough to consider only the 2J+1 lowest lying states determined 

by the third rule. 

Table 2.1 shows the S, L, J values, gJ, peff, and Msat for all the rare earths, along 

with approximate experimental values that are commonly found (Kittel, 1996).  Notice 

the large discrepancies for both samarium and europium.  Figure 2.3 shows the energy 

levels of praseodymium, samarium, europium and terbium as determined by Hund’s 

rules.  These are drawn to scale and the energy corresponding to 293 K is shown as the 

short vertical line coming up from the lowest level.  For praseodymium and terbium there 

is a very large separation in energy between the two lowest energy levels and at room 

temperature it is appropriate to neglect the higher levels 
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as they are not appreciably populated at room temperature.  On the other hand, for 

samarium and europium, the energy levels are more closely spaced and at room 

Table 2.1.  Angular momentum quantum numbers S, L, J, as determined by Hund’s 
rules for the trivalent magnetic rare earth ions.  Also presented are calculated values of 
the Landé (gJ), saturated moment (Msat), effective moment (peff(calc)) and common 
experimental values of the effective moment (peff(exp)).   
 
Ion S L J gJ M sat peff(calc) peff(exp)
Ce 0.5 3 2.5 0.857 2.14 2.54 2.4
Pr 1 5 4 0.800 3.20 3.58 3.5
Nd 1.5 6 4.5 0.727 3.27 3.62 3.5
Pm 2 6 4 0.600 2.40 2.68 --
Sm 2.5 5 2.5 0.286 0.71 0.84 (1.58) 1.5
Eu 3 3 0 -- -- --     (3.46) 3.4
Gd 3.5 0 3.5 2.000 7.00 7.94 8.0
Tb 3 3 6 1.500 9.00 9.72 9.5
Dy 2.5 5 7.5 1.333 10.00 10.64 10.6
Ho 2 6 8 1.250 10.00 10.61 10.4
Er 1.5 6 7.5 1.200 9.00 9.58 9.5
Tm 1 5 6 1.167 7.00 7.56 7.3
Yb 0.5 3 3.5 1.142 4.00 4.54 4.5
 
 

 
Figure 2.3.  The energy levels of four rare earth ions, drawn to scale with the energy 
corresponding to 293 K also shown.  Each of these levels are 2J+1 degenerate (after 
Rosenberg, 1965).  
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temperature the second lowest energy level has an appreciable population which can not 

be neglected.  Values of peff have been calculated for these two elements taking into 

account this population of excited states by Van Vleck and these values are shown in 

parenthesis in Table 2.1  (Rosenberg, 1965). 

2.2.3. RKKY Exchange Interaction 

The previous discussion is valid for non-interacting ions in free space.  The results 

are modified by two effects due to the placement of the ions in a crystalline environment.  

The first of these effects is the interaction of the magnetic moment of one ion with the 

moments of the other ions present in the crystal.  The other effect is caused by internal 

electric fields in the crystal created by the surrounding structure and neighboring atoms.  

The former effect will be discussed briefly in this section and the latter will be discussed 

in the next section. 

For systems with interacting moments, the susceptibility may deviate from the 

Curie law.  There are two primary modes for interaction to take place between magnetic 

moments.  The first is a direct exchange interaction due to a spatial overlap of electronic 

wave functions.  Figure 2.4 shows the radial densities of the electrons in gadolinium.  The 

4f electrons are much more strongly localized than the 5s2, 5p6, and 6s2 shells. The 

overlap between 4f shells on neighboring rare earth ions will be extremely small and 

therefore the possibility of a direct exchange between the ions will be highly reduced.  In 

a metal the primary interaction between the magnetic moments on the ions is then the 

indirect exchange.   
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This indirect exchange interaction arises when the localized spin of the 4f 

electrons interacts with the spin of the conduction electrons.  This interaction polarizes 

the conduction electrons around the ion with respect to the ion’s spin angular momentum.  

For example, the polarization is parallel between the localized 4f electrons and the 5d 

conduction electrons.  For the rare earths from cerium to europium the spin angular 

momentum is oriented antiparallel to the orbital angular momentum (J = |L-S| for electron 

shells less than half full, Hund’s third rule) and this leads to a polarization of the 

conduction electrons that is antiparallel to the magnetic moment.  For gadolinium to 

ytterbium the spin momentum is parallel to the orbital momentum and the polarization is 

parallel to the magnetic moment.  It was shown by M. A. Ruderman, C. Kittel, T. 

 

 
Figure 2.4.  Radial densities of the electrons of Gd3+ from Hartree-Fock calculations 
(after Taylor and Darby, 1972). 
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Kasuya, and K. Yosida (RKKY) that this spin polarization alternates in sign with 

increasing distance from the ion and a frequency proportional to the Fermi wavevector, 

kf, and decreases in magnitude approximately as the distance cubed (Hurd,1975).  This 

interaction can be considered as a magnetic scattering event, where the scattering of a 

conduction electron from a magnetic ion is dependent on the spin configuration.  This 

conduction electron then interacts with another magnetic ion and the scattering is again 

dependent on the local spin configuration.  In this way the two magnetic ions are able to 

interact in a cooperative manner.   

The oscillatory as well as the long range nature of the RKKY interaction, as this 

type of interaction has come to be known, can couple spins in either a ferromagnetic or an 

antiferromagnetic manner depending on the ions’ separation and the shape of the Fermi 

surface.  This can lead to many diverse magnetic orderings and RKKY exchange 

interaction’s sensitivity to the morphology of the Fermi surface can profoundly affect the 

ordering wavevector, often leading to incommensurate magnetic structures.  At high 

temperatures, the thermal energy of the atoms is greater than energy of the interaction and 

they do not order.  At lower temperatures, it is possible for the energy of the interaction to 

overcome the thermal agitation and the ions are able to enter into an ordered state.   

The Curie law is based on the premise of the possible spin states being populated 

in a thermally random manner.  The presence of exchange interactions creates a 

preference for particular spin states.  At high applied fields and low temperatures the 

Curie law says that the majority of (and at absolute zero, eventually all) of the spins will 

be aligned with the field.  A ferromagnetic interaction is also tending to align the 



17 

moments with the field and it is not unreasonable to expect that a total alignment of the 

moments will occur at a temperature above absolute zero, or make the effective 

temperature less than the actual temperature.  Conversely, an antiferromagnetic exchange 

interaction is tending to create a state in which the fractional population of spin up and 

spin down states are equal, which for the Curie law holds true at very high temperatures 

and low fields.  So again it is not unreasonable to expect that in this case the interactions 

will retard the saturation of the moment, creating an effective temperature greater than 

the actual temperature.   

This can be simply seen by applying a mean field approximation, where it is 

assumed that each magnetic ion experiences an internal field due to the exchange 

interactions.  This field is proportional to the magnetization and is given by (Kittel,1996) 

MBE λ= ,        (2.12) 

where λ is independent of temperature and represents the exchange interactions.  In this 

manner each spin will “see” the average magnetization of all the other magnetic ions.  In 

the paramagnetic region (high temperatures) the magnetization (M) can be written as 

  ( Eap BBM += )χ ,      (2.13) 

where Ba is the applied field.  According to the Curie law (Equation 2.6) the 

paramagnetic susceptibility is given by χp=C/T.  Combining these three equations leads 

to  

  
( )

T
MBC

M a λ+
= .      (2.14) 

Solving for M and the susceptibility, Equation 2.11 becomes 
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where θ is the Weiss temperature (Kittel, 1996).  Equation 2.13 is known as the Curie-

Weiss law.  θ is proportional to the exchange interaction represented by λ and causes the 

effective temperature (T-θ) to be less than the actual temperature, as was expected.  

Similar arguments can be applied to the antiferromagnetic case, except that now the 

magnetic ion would see a negative field (BE) due to the other magnetic ions in the 

material.  This means that λ is negative and leads to a negative Weiss temperature (θ). 

This negative θ causes the effective temperature (T-θ) to be more than the actual 

temperature, thereby resisting the tendency of the magnetization to saturate as the 

temperature is lowered. 

2.2.4. The Ordered State 

When the temperature is low enough, the energy of the exchange interaction is 

larger than the thermal averaging and the magnetic system enters into long range order.  

In the paramagnetic region, the orientation of any one magnetic moment is independent 

of the orientation of the other moments in the system, and one can talk about the energy 

state or level of a particular ion.  In the ordered state, the orientation of a particular 

moment is determined by the orientation of all the others.   

As mentioned previously, The RKKY exchange interaction is oscillatory in sign 

and is highly influenced by the shape of the Fermi surface.  This can lead to many 
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different types of spatial ordering.  A commensurate magnetic structure has a spatial 

ordering, or wavevector, that is related to the underlying crystal structure.  An 

incommensurate structure is one whose wavevector is not related to the crystal lattice.  

Often intermetallic magnetic systems can exhibit both of these types, such as TbNi2Ge2, 

which has an incommensurate structure below 16.8 K and a commensurate structure 

below 9.3 K.  The ordered state may also be ferromagnetic, antiferromagnetic or 

somewhere in between.  A ferromagnetic structure is one where all the spins point in the 

same direction, with the same saturation value.  In an antiferromagnetic structure there is 

a unit cell in with an equal number of the moments pointing down and  pointing up, or 

more strictly the value of the saturated magnetization directed down is equal to the that 

which is directed up.  This unit cell is then repeated throughout the crystal.  This can lead 

to a wide variety of different antiferromagnetic structures depending on the magnetic unit 

cell. 

The transition to a magnetically ordered state is characterized by a transition 

temperature, the Curie temperature, TC, for ferromagnets, and the Neél temperature, TN, 

for antiferromagnets.  This transition can be marked by a lambda-peak anomaly in 

specific heat measurements at the transition temperature.  There are also very strong 

effects seen in susceptibility measurements and in resistivity measurements.  There have 

been several theoretical studies linking these effects to the specific heat anomaly.  It has 

been shown that the peak seen in d(χT)/dT as a function of temperature is proportional to 

the specific heat close to TN for an antiferromagnet (Fisher, 1962), and that the peak seen 

in dρ/dT is also proportional to the specific heat close to TN (Escorne, 1981). 
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2.2.5. Crystal Electric Field 

In the previous section modifications to the Curie law due to the interaction of the 

magnetic ions with each other were examined.  In this section a modification to the Curie 

law due to internal crystalline electric fields will be discussed. 

The crystalline electric field (CEF) arises from the presence of nearby atoms in a 

lattice and is derived from the Coulomb repulsion between the electrons in a shell and the 

charges on neighboring ions (Hurd,1975).  These fields are nonuniform electrostatic 

fields that reflect the symmetry of the ion’s environment.  The repulsion due to the CEF 

may be strong enough to disrupt the ground state of the magnetic ion as determined by 

Hund’s rules.  This means that some electrons in the unfilled shell may find it more 

energetically favorable to relocate to other ml orbitals that have shapes that will keep 

them further away from the neighboring ions, thus changing the electron ground state 

configuration.   

The 2J+1 degenerate states of a rare earth ion as determined from Hund’s rules 

can be split into several levels dependent on the actual symmetry of the environment 

around the magnetic ion. This is seen in Figure 2.5 for a magnetic ion with L = 3 and S = 

3/2 where the Hund’s rule ground state J=3/2, which is fourfold degenerate, is split into 

two doublets.  The energy splitting due to the CEF is not necessarily uniform and this has 

consequences to Curie’s law.  The derivation of Curie’s law assumed an uniform splitting 

between all the levels when in a magnetic field.  With the uneven splitting due to the 

CEF, Curie’s law will not hold except at temperatures which are sufficiently high 

compared to the splitting energy.  At these higher temperatures the effect of the split CEF 



21 

levels can be taken into account by means of a correction term to the next order in 1/T 

(Rosenberg,1965).  The Curie law then becomes 

Figure 2.5.  The energy levels of an ion with L=3 and S=3/2.  The several different 
possibilities of J running from L-S to L+S in integer steps are separated by energies 
corresponding to 1000’s of degrees K, so that only the lowest level, J=3/2 is appreciably 
populated.  In (a) the fourfold degeneracy of the J=3/2 ground state is removed by a 
magnetic field H.  In (b) the crystal electric field (CEF) splits this level into two 
doublets, of which only the lower one will be appreciably populated at low 
temperatures.  The degeneracy of these doublets are also removed by the application of 
a field H. (after Rosenberg, 1965) 
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where Δ is a correction term to account for the CEF effects and the last step was 

performed to make the equation look like the Curie-Weiss law (Equation 2.16). 

The value of θ in this case will be dependent upon the direction of the applied 

magnetic field.  Since the CEF favors particular ml values, this will cause the magnetic 
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moment to have a preferential orientation with respect to the crystalline lattice.  If a 

magnetic field is applied parallel to this preferred direction, then the CEF will be aiding 

in aligning the moments with the field.  This is similar to the case with ferromagnetic 

interactions and therefore it is not unreasonable to expect that θ will be positive.  If the 

field is applied in a direction contrary to the CEF preferred direction, then the crystalline 

electric fields will be tending to prevent the moments from aligning with the field and 

therefore θ should be negative.   

For the rare earths, the preferential alignment of the moments with respect to the 

crystalline environment can be extreme and depends on how the moments are 

constrained.  The moments could be constrained to lie along a particular axis, creating an 

Ising system.  This is the case with TbNi2Ge2.  The moments can also be constrained to 

lie within a particular plane, for example DyAgSb2 (Myers, 1999).  There are also 

possibilities falling between these two extreme cases.  A special case is that of 

gadolinium.  Gadolinium has a half full orbital with seven electrons.  This gives a value 

for the total orbital angular momentum (L) of zero, by Hund’s second rule.  This leads to 

a spherical orbital which is not altered by the CEF and therefore the ground state 2J+1 

degeneracy remains unsplit.  Therefore, the magnetic moment will be unconstrained and 

will be able to point in any direction.  This is a Heisenberg system. 

It can be shown (Boutron,1973; Dunlap, 1983), that for a tetragonal system, such 

as TbNi2Ge2, the effects of CEF splitting can be removed from magnetization data, at 

least to first order, by performing a polycrystalline average of the susceptibility (or 

directly measuring randomly oriented polycrystalline samples) , defined as 
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Here, χc is the susceptibility with the field parallel to the c-axis of the crystal and χab is 

the susceptibility with the field applied perpendicular to the c-axis.  By applying the 

Curie-Weiss law to χpoly it is possible to extract θpoly, which more accurately reflects the 

effects of the RKKY interaction.   

One effect that is characteristic of RKKY mediated interactions is the scaling of 

quantities that are dependent upon the value of the exchange interaction with what is 

called the de Gennes factor.  This factor is defined as  

  ,     (2.19) ( ) ( 11 2 +−= JJgdG J )

where gJ is the Landé g factor and J is the total angular momentum determined by the 

third Hund rule.  Two important quantities that scale with dG are the transition 

temperatures between the paramagnetic state at high temperatures and the long-range 

ordered state at low temperatures, TC or TN, and the polycrystalline Weiss temperature, 

θpoly.   

 

2.3. What is a Spin Glass? 

2.3.1. Definition 

What is a spin glass?  A spin glass may be defined as a random (or aperiodic), 

mixed-interacting, magnetic system characterized by a random but co-operative freezing 

of spins at a well-defined temperature Tf.  Below this temperature a highly irreversible, 
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metastable frozen state exists without long-range spatial magnetic order (Mydosh, 1993).  

The name spin glass was coined via analogy to structural glasses that freeze with no long 

range atomic order.  There are three important statements in this definition: randomness, 

mixed interactions, and a co-operative freezing.  The randomness is created either by a 

random site occupancy between magnetic and nonmagnetic elements or by a random 

bond system where the bonds between well ordered magnetic sites are randomly 

distributed.  It may also be accomplished by an aperiodic separation of the spins, which 

would hold for quasicrystalline systems, which are believed to be atomically well 

ordered. The mixed interactions are needed to produce a competition between 

ferromagnetic and antiferromagnetic interactions in order to produce frustration of the 

moments.  This frustration plays a large role in the co-operative nature of the frozen 

metastable state.  Thirdly, the transition is a co-operative one.  Roughly speaking this 

means that all the spins freeze in unison, and it is no longer meaningful to talk about the 

energy states of the individual spins but rather the energy of the configuration of spins as 

a whole. 

What happens to the spins in a spin glass as the temperature is reduced to Tf?  A 

simple picture will be presented here to provide some physical insight into the problem.  

At very high temperatures the spins are purely paramagnetic and obeying the Curie-

Weiss law as discussed earlier.  At lower temperatures but still above Tf, the interaction 

between spins will give rise to locally correlated clusters.  These clusters will also be 

paramagnetic and exhibit Curie-Weiss behavior.  This formation of clusters is a 

consequence of the randomness and mixed interactions.  As the temperature approaches 
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Tf more spins are involved in the clustering as the disorder due to temperature is 

removed.  The spin system seeks a ground state configuration based on its particular 

distribution of spins and exchange interactions.  This generates a set of random alignment 

axes into which the spins or clusters can freeze.  Here frustration plays its role and a 

multidegenerate array of ground states is available to the system.  Since there is a 

spectrum of energy differences between frozen states, the system may become trapped in 

a metastable state of higher energy.  Below Tf, unusual magnetic behavior appears which 

is related to the glassy nature of the frozen state. In this state no long range magnetic 

order is formed.  The following section will provide an overview of a few of the main 

experimental features seen in spin glasses.  It will be against these features that the low 

terbium concentration region of this study will be compared. 

2.3.2. Phase Diagrams 

Before looking at specific characteristics of spin glasses, it is instructive to take a 

quick look at the variety of magnetic behavior available by changing the concentration of 

the magnetic ion present in the material.  Figure 2.6 shows a schematic of the 

concentration regimes that are possible in a dilute magnetic alloy.  At the very dilute 

concentration region there are isolated impurity-conduction electron couplings that result 

in the Kondo effect for some hybridizing systems.  The next most dilute region can be 

described by interacting single spins without any clustering.  The measurable properties, 

Tf as well as critical fields, can be described through a mean field concentration scaling 

of the parameters T/x, and H/x, where x is the concentration of magnetic ions.  Following  
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this region is a region where the scaling breaks down and Tf follows a more closely to a 

x2/3 relation.  In this region, clusters of pairs and triplets (and higher) of spins are formed 

and begin to influence the system.  At concentrations greater than 10 % these clusters 

dominate the magnetic properties and the region is called mictomagnetism to emphasize 

the anomalies generated by these very large clusters.  Finally a percolation limit is 

reached for long range, inhomogeneous ferro- or antiferromagnetic order with a well 

defined transition temperature.  

Figure. 2.6.  Various concentration regimes for a canonical spin glass illustrating the 
different types of magnetic behavior that exist (after Mydosh, 1993). 
 
 

The term spin glass will be used to refer to the region from the dilute limit almost 

up to the percolation limit.  This avoids the unnecessary complications of having three or 

more types of spin glass regimes.  The different regions seen in Figure 2.6 are not 

separated by sharp boundaries, rather there is a gradual transition from one to another 
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(Mydosh, 1993).  Figure 2.7 shows a general temperature versus concentration phase 

diagram for a dilute magnetic alloy.  TK is the average Kondo temperature which 

decreases with concentration.  The spin glass region first appears for Tf < TK.  Above TK, 

the spin glass region has first a linear then with a less than linear dependence of Tf on 

concentration.  When the percolation limit is passed there is the nearly linear increase of 

Curie or Neel temperatures with concentration.  Now that the region of spin glass 

properties has been outlined some of the experimental properties can be studied. 

2.3.3. DC Susceptibility 

At high temperatures the system is paramagnetic and follows the Curie-Weiss 

law.  As the temperature is lowered the susceptibility deviates from this behavior.  This is 

due to the formation of clusters and is most clearly seen in plots of 1/χ as a function of 

temperature.  This is shown in Figure 2.8 for several concentrations of AuFe 

(Morgownik, 1983).  The direction of the deviation is dependent on the type of clustering, 

 
Figure 2.7.  A general temperature-concentration phase diagram for a dilute magnetic 
alloy (after Mydosh, 1993). 
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ferro- or antiferromagnetic.  This clustering is determined by the value of the exchange 

interaction which is reflected in the Weiss temperature θ.  For this particular material θ 

varies from negative to positive as the concentration increases.  It should be noted that 

although AuFe is a classic Kondo material, the Kondo effect occurs at iron concentrations 

of less than 400 ppm or 0.04 %.  Thus the effects seen in Figure 2.8 are not 

manifestations of the Kondo effect. 

Figure 2.8.  1/χ for 5 different concentrations of Fe in Au.  The dashed lines are linear 
extrapolations of Curie-Weiss behavior from high temperature. θ is determined by 
where lines intercepts the x axis.  Notice the deviations from C-W at low temperatures.  
For antiferromagnetic clustering, corresponding negative θ, there is a negative 
deviation. For ferromagnetic clustering, positive θ, the deviations are positive.  (after 
Morgownik, 1983)  
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At temperatures spanning Tf and low applied fields a striking difference is seen in 

the dc magnetization as a function of temperature depending on whether the sample is 

cooled in zero field (zfc) or in a small but non-zero field (fc).  This is seen in Figure 2.9 

which shows the zfc and fc magnetization for two concentrations of CuMn in an applied 

field of 6 Oe.  The fc magnetization is fully reversible.  The zfc magnetization is not and 

is highly sensitive to the rate of temperature increase, dT/dt (Mydosh,1993).  These 

effects occur even though the field is so small, μBH<<kBT, and clearly demonstrates the 

existence of a multidegenerate groundstate.  The onset of these irreversibilities cleanly 

defines Tf.   

The freezing temperature Tf is strongly influenced by magnetic field and 

decreases as the field increases.  The Sherrington-Kirkpatrick (SK) model is a mean field 

theory for Ising spin glasses, and in this model a phase boundary has been proposed by de 

 

Figure 2.9.  Field cooled [(a) and (c)] and zero field cooled [(b) and (d)]magnetization 
for CuMn at 1 and 2 % as a function of temperature.  (after Mydosh, 1993) 
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Almeida and Thouless which is called the AT line (de Almeida, 1978).  This line is given 

by the equation  
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where the coefficient A is a function of the averaged exchange interaction, J0/J.  This 

theory is developed for Ising spin glasses and this behavior of the freezing temperature is 

universally seen for Ising spin glasses and it is seen for non-Ising spin glasses as well 

(Katori, 1994). 

From this discussion there are three characteristics of spin glasses that are seen in 

dc magnetization measurements.  One of these is the deviation from Curie-Weiss 

behavior at temperatures above Tf, which reflects the creation of clusters and short range 

correlations with in the random system.  The spin glass state can be thought of as being 

built from these clusters.  Another signature of spin glasses seen from these 

measurements is the onset of magnetization irreversibilities at the freezing temperature 

dependent on the temperature and field history of the system.  The freezing temperature is 

also dependent on the strength of the applied field and it follows the AT line derived from 

a mean field theory for Ising spin glasses.   

2.3.4. AC Susceptibility 

The ac susceptibility reveals several features that are held in common among 

many spin glass systems.  Figure 2.10 shows the real and imaginary components of the ac 

susceptibility as a function of temperature for Eu0.2Sr0.8S at different frequencies.  The 

real part, χ′, has a sharp peak at the freezing temperature.  The high temperature 
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paramagnetic tail overlaps with that determined from dc measurements.  On low 

temperature side χ′ extrapolates to a finite value at T=0 and can be fit by  

( ) ( ) nbTT +′=′ 0χχ       (2.21) 

where for metallic spin glasses n is approximately 2 and a ratio of χ(0)/χ(Tf) ~ 0.5-06 is 

roughly found (Mydosh, 1993).  These measurments have been applied to many spin 

glass systems which show the same general characteristics. 

Figure 2.10 also shows the imaginary component of the ac susceptibility.  For a 

spin glass there is a sudden onset of χ′′ near Tf.  This onset means that there are 

relaxation processes that are affecting the measurement and causing  absorption.  Effects 

like this are not seen in conventional magnetic transitions.  From χ′′, Tf can be 

determined from the maximum slope in this sudden onset. 

Notice in Figure 2.10 that the peak in χ′ moves to higher temperatures as the 

frequency increases. Higher frequencies are frozen out at higher temperatures.  This is 

like a real glass getting more viscous as Tf is approached and is a manifestation of the 

system slowing down.  For a frequency variation of about 103, Tf is increased by a few 

percent.  It might be thought that this frequency dependence can be analyzed by applying 

the Arrhenius law for thermal activation, 
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where Ea is an activation energy and ω is the driving frequency of the measurement.  For 

CuMn at 4.6 % Ea=4400 K and ω0=10200 Hz.  Results like this are unphysical, since this 

activation energy is several orders of magnitude greater than the ordering temperature 
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and even the melting temperature and the frequency is very large compared to spin 

fluctuations, and are due to the very small change in Tf with frequency, and distinquishes  

 

Figure 2.10.  Temperature dependence for the real, χ′ (solid symbols), and imaginary, 
χ′′ (open symbols), components of the ac susceptibility for Eu0.2Sr0.8S for frequencies of 
10.9 Hz (circles), 261 Hz (squares), and 1969 Hz (triangles) with an ac driving field of 
0.1 Oe. (after Mydosh, 1993) 
 
 

a spin glass from a superparamagnet for which the Arhennius law does hold and gives 

physically realistic values of Ea and ω.  This shows that there is more involved than a 

simple energy barrier blocking and thermal activation in a spin glass transition (Mydosh, 

1993).   
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Another method used to analysis this frequency shift is to apply the Vogel-

Fulcher law, which was derived to explain the viscosity of supercooled liquids and real 

glasses.  For this case it can be written as, 
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where a new parameter, T0, is used and for real glasses is referred to as the ideal glass 

temperature.  With three parameters the fit is naturally much better and produces more 

realistic values.  For CuMn with 4.6 % values are obtained of ω0=1.6×108 Hz, Ea=11.8 K, 

and T0=26.9 K, which is less than the freezing temperature of this compound of 27.5 K 

for low frequencies.  Currently there is no precise physical meaning for T0 in spin glasses.  

Results like this are again typical for spin glasses. 

2.3.5. Non-Linear Susceptibility. 

In spin glass research, an important, relatively new parameter is the nonlinear 

susceptibility.  According to theory, this parameter should exhibit the critical 

susceptibility divergence and exponent of a spin glass (Mydosh, 1993).  There are two 

alternative but related definitions of the nonlinear susceptibility, χnl.   

In the first definition, start by expanding the magnetization as a function of odd 

powers of the applied field H then calculate the susceptibility, 
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Now one can measure the magnetization as a function of field or the ac susceptibility as a 

function of field.  By fitting the above equations the nonlinear terms, a3, a5, a7, and higher 

can be extracted.   

In the second method, an ac driving field, h, is applied at a frequency, ω.  A 

similar expansion is then performed but this time as a function of odd frequency 

harmonics, 3ω, 5ω, ... . This leads to a M(ω) of the following form, 
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and similarly for the imaginary component χ′′.  If it is assumed that the driving field h is 

small (i.e. keeping only leading terms for each harmonic), then the magnetization 

becomes, 
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and similarly for the imaginary component.  Now one can measure the various 

parameters  χ′1, χ′3, χ′5, and higher.   

Many different techniques have been used to determine χ.  Unfortunately there 

are practical difficulties associated with each of them.  For the field expansion the rather 
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large applied fields that might be used will affect the spin glass transition.  This was seen 

in the discussion of the AT line.  This disrupts the critical phenomenon.  For the 

harmonic expansion the relaxation times quickly become larger than ω-1 and this also 

influences the critical behavior.   

Regardless of these difficulties, χnl is still crucial in establishing the properties of 

the phase transition in spin glasses.  This is illustrated in Figure 2.11 where χ′3 for AgMn 

(0.5%) with a Tf = 2.945 K is plotted versus reduced temperature (T-Tf)/Tf.  A log-log 

scale is used so that the slope is proportional to the critical exponent.  It appears that there 

is a power law behavior with a critical exponent of 2.1 (Lévy, 1988). But note that χ′3 

 

Figure 2.11.  Temperature dependence of χ′3 above Tf (Tg is the same as Tf, the freezing 
temperature of the spin glass).  Sample of AgMn with 0.5 % was measured at 10-2 Hz in 
static fields of 0 Oe (open circles) and 90 Oe (closed circles) as a function of reduced 
temperature.  The slope is the same in both curves and gives a critical exponent of 2.1.  
(after Lévy, 1988) 
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starts to round off below 2×10-2 in reduced temperature.  This means that one cannot 

approach too close  

to Tf before the transition is smeared out, probably because the distribution of relaxation 

times becomes too great and the system drifts out of equilibrium. In usual phase 

transitions, these divergences can be followed as close as 10-4 in reduced temperature to 

the transition.  This shows that spin glasses do not display an ordinary phase transition 

(Mydosh, 1993).  Even without the critical exponents, the sharp peak of χnl(T) at Tf 

distinguishes a spin glass freezing transition from a progressive freezing of the moments 

of superparamagnetic clusters (Bitoh, 1996).  This is seen in Figure 2.12 which shows the 

nonlinear susceptibilities, χ3, for the spin glass system Au96Fe4 and the 

superparamagnetic system Cu97Co3. 

 

Figure 2.12 Nonlinear susceptibilities for the spin glass system Au96Fe4 and the 
superparamagnetic system Cu97Co3 (Bitoh, 1996). 
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2.3.6. Remanence and Relaxation 

In the low temperature region where T<Tf there are several properties which are 

highly dependent upon the relaxation processes of the frustrated spin glass state.  These 

processes cause the magnetization to have a time dependence.  These relaxation processes 

are an extensive problem and it is beyond the scope of this work to study them in detail.  

There are a couple measurements, though which are useful in demonstrating these effects 

and these will be considered in this section.  

The first of these effects is the remanent magnetization.  This is the magnetization 

that a spin glass maintains after an applied field is turned off.  This remanent 

magnetization is formed because the applied field induces the spin glass to enter a 

metastable state that has a small net ferromagnetic component.  When the field is reduced 

to zero, this small moment slowly dissipates.  There are two types of remanence 

depending on the precise temperature and field history of the measurement.  The first is 

the isothermal remanent magnetization (IRM).  To measure the IRM a spin glass is 

cooled through Tf in zero applied field.  Then a field is applied, a wait time, tw, is allowed 

to elapse and then the field is returned to zero and the IRM is measured.  The second type 

of remanence is the thermoremanent magnetization (TRM).  Here a field is applied at 

temperatures above the freezing temperature.  The spin glass is then cooled through the 

freezing transition and a wait time, tw, is again allowed to elapse.  The field is then 

returned to zero and the TRM is measured.  The results of this type of measurement are 

seen in Figure 2.13.  Here the TRM and IRM for a 0.5 % dilution of iron into gold, with a 
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Tf of 5.2 K, are displayed (Tholence, 1974).  This shows that the TRM saturates at lower 

fields than that of the IRM.  These results are common among the spin glasses.   

Figure 2.13.  Field dependence of the TRM and IRM of AuFe 0.5 % at T=1.2 K  (after 
Thoulence, 1974). 
 
 

The relaxation processes that are present in the spin glasses are highly dependent 

on the wait time, tw.  The relaxation processes can be discerned in several ways.  One can 

zero field cool the spin glass, wait a time, tw, and then turn on a small field and track the 

magnetization as it increase with time.  Another method is to track the remanent 

magnetization as it decreases with time.  Many functional forms have been suggested to 

describe the relaxation of the magnetization.  One popular form is the stretched 

exponential, 
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where M0 and tp are functions of the wait time and temperature and n is a function of 

temperature only.  If n=0 then this becomes the Debye, single time constant exponential 

relaxation.  If n=1 then M(t) is a constant and so n critically determines the exact 

relaxation rate.   

The results of measuring the relaxation of the TRM of CuMn (0.5 %) are shown 

in Figure 2.14 for two different tw (Mydosh, 1993).  The thick solid lines are the 

experimental data, the thin solid lines are a fit to the stretched exponential.  Equation 2.29 

 
Figure 2.14.  Relaxation of the TRM of CuMn 0.5 % in the time interval 10-4 to 108 
seconds.  Thick full lines are the experimental data.  Thin full lines represent fitting by 
stretched exponential alone and the dashed lines represent fitting by stretched 
exponential and a logarithmic term.  (a) tw = 1000 seconds and T = 21 K (top) and 25 K 
(bottom); and (b) ) tw = 100 seconds and T = 21 K (top) and 25 K (bottom) (after 
Mydosh, 1993). 
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fits reasonably well for times that are close to the wait time but the fit is progressively 

worse for much larger or smaller time scales.  In order to get a better fit a second term is 

superimposed on the stretched exponential which is purely logarithmic of the form, 

tSHtM R ln)( =′        (2.30) 

where S is the relaxation rate in dynamical equilibrium.  By the addition of this second 

term the fitting greatly improves and this is seen by the dashed line in Figure 2.14.  This 

shows that the relaxation process is logarithmic for t<tw and t>tw and the wait time 

superimposes a stretched exponential on the relaxation processes around t=tw.   

 

2.3.7. Specific Heat 

In this section the features of spin glasses that are displayed in measurements of 

the specific heat will be explored.  Figure 2.15 displays the magnetic contribution to the 

specific heat of CuMn (0.3 %) as a function of temperature and at several different 

applied fields (Mydosh,1993).  For this compound the freezing temperature is Tf = 3.0 K.   

The features displayed here are quite generic and are common to most spin glasses.  At 

temperatures above Tf it should be noticed that there is a broad maximum above Tf and 

then a long tail.  In metallic spin glasses, this tail follows an approximate 1/T 

dependence.  Instead of a sharp feature which is typical of conventional phase transitions, 

the broad and smeared out nature of these features are indicative of the short range 

correlation and clustering of spins that is slowly building up and removing entropy as the 

temperature is decreased.  It is from these clusters that the spin glass state is eventually 



41 

 

constructed.  Recall that the magnetic entropy, Sm, can be determined from the specific 

heat, Cp-mag, 

Figure 2.15.  Magnetic contribution of the specific heat of CuMn (0.3 %) as a function 
of temperature at various fields.  Note that Tf=3.0 K is indicated by the arrow.  (after 
Mydosh, 1993). 
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where the last term is the total degrees of freedom for a magnetic system.  For spin 

glasses, a large proportion of this entropy is removed at temperatures above the freezing 

transition.  This entropy is lost in the formation of the clusters. 

At Tf there is very little to note, which in itself is noteworthy.  There is no feature 

at freezing transition in contrast to the peaks and other features seen in the magnetic 

measurements.  This is another indication that the transition is an unconventional one.  

Below Tf the specific heat has an approximately linear region.  At the lowest 
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temperatures deviations to this linearity occur causing a positive upturn to force the 

specific heat to zero in accordance with the third law of thermodynamics.  This low 

temperature upturn generally follows a T3/2 behavior (Thomson, 1981).  There are then a 

few primary features that are held in common between spin glasses in specific heat 

measurements.  A broad peak and tail with a 1/T dependence for metallic systems 

indicative of the clustering occurring among the spins as the temperature drops.  A large 

portion of the magnetic entropy is removed even before Tf is reached from above.  No 

clear feature is seen at the transition in contrast to those seen in magnetization data.  

Below Tf there is an approximately linear region followed by a region with a T3/2 

dependence at the lowest temperatures.   
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3. CRYSTAL GROWTH  

3.1. Advantages of Single Crystals 

The first step in the study of crystalline materials is producing them.  Quite often 

the initial crystals are in a polycrystalline form.  This is frequently done by combining the 

pure elements using an arc-furnace with a water cooled copper hearth in an inert 

atmosphere, turning the samples several times between melts in order to insure 

homogeneity.  Samples made in this way are called polycrystalline because they are 

composed of many microcrystals oriented randomly in space.  Many new compounds are 

often discovered by this method, for example the rare earth nickel boro-carbides were 

first made in this way (Cava, 1994; Nagarajan, 1994).  This method allows the study of 

the bulk and microscopic properties of the material, but since the microcrystals are 

randomly oriented, any information about anisotropic properties are averaged out.  Single 

crystals are necessary for the study of the anisotropic properties of a material.   

Another benefit of using single crystals is that their quality is generally superior to 

that of polycrystals.  This is due primarily to impurities that are present at the grain 

boundaries of polycrystalline materials.  These impurities are greatly reduced in single 

crystals due to their smaller surface area to volume ratio.  Also for incongruent phases, 

the problem of having second phases present is large for arcmelted samples whereas 

second phases usually can be avoided and therefore are rarely present for flux grown 

samples.  In addition, because of rapid cooling and crystallites growing against each 
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other, it is possible that a great amount of stress and strain may also be present in 

polycrystalline samples.  

One method of crystal growth that works well is growth from a high temperature 

solution, also known as flux growth.  This method provides an environment for the 

crystal to grow in that is free from many of the strains and temperature gradients that may 

be inherent to other methods. The crystals are grown from a liquid that is cooled over a 

long period of time so that the growth proceeds via a series of quasi-thermodynamically 

stable steps.  This provides crystals that are relatively free from strain and displays their 

natural growth habits (Canfield, 1992).  The next sections will more thoroughly discuss 

this technique as it is applied in the growth of certain binary and ternary compounds.  The 

first section will discuss the growth of a binary compound and introduce binary phase 

diagrams.  In the next section the growth of binary compounds from a third element will 

be discussed.  The discussion will then move to the growth of ternary compounds, such as 

TbNi2Ge2, from a ternary melt and then to the growth of psuedoternary compounds.  

After this, specific techniques used in the growth of crystals from a high-temperature 

solution will be discussed.   

 

3.2. Growth of Single Crystals from High Temperature Solutions 

3.2.1. Binary Compounds 

In order to grow binary compounds, it helps to become familiar with the 

associated binary phase diagram.  These have been experimentally constructed for many 

elemental pairs and theoretically proposed for several others.  An example of a phase 
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diagram is seen in Figure 3.1 for Ce and Sb.  In the upper portion of the diagram is the 

region of homogeneous liquid (L).  The lower portion contains solid compounds in 

equilibrium with the liquid and regions of all solid below the eutectic temperatures of 

approximately 760 ºC and 630 ºC.  The curved line separating these two regions is the 

liquidus line.  At low temperatures there are five compounds that are thermodynamically  

 
 

Figure 3.1 Phase diagram of Ce-Sb (after Massalski, 1992). 
 
 

stable which are represented as vertical lines.  These are Ce2Sb, Ce5Sb3, Ce4Sb3, CeSb, 

and CeSb2.  Of these compounds, the only one that does not decompose before melting is 

CeSb, and is therefore a congruently melting compound.  All the other compounds 

decompose into a liquid and a different solid before they reach the liquidus, and are 

called incongruently melting compounds.  As an example,  CeSb2 is stable up to a 
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temperature of approximately 1500 ºC, where it then decomposes into CeSb and liquid, 

which is represented by the horizontal peritectic line.  This temperature is called the 

peritectic.  If a composition of Ce0.55Sb0.45 is heated to above the liquidus then allowed to 

cool, several events will take place.  First, as the melt cools below the liquidus, CeSb will 

be precipitated and the composition of the remaining liquid will move away from this 

compound, in this case to the left, following the curve of the liquidus.  As the melt is 

further cooled past each successive peritectic, a different compound will be precipitated 

from the melt.  At a composition of Ce0.97Sb0.03, the melt reaches a point where the 

liquidus reaches a minimum. This point is called the eutectic.  A further decrease in 

temperature will result in the solidification of the remaining melt.   

From the previous description, it is an easy step to grow single crystals from a 

high temperature solution, taking into account various limiting factors such as peritectic 

and eutectic temperatures.  Limitations on temperature due to laboratory equipment must 

also be considered.  The use of silicon carbide furnace elements and quartz to isolate the 

melt in an inert atmosphere, limits the upper temperature to 1500 ºC and 1200 ºC 

respectively.  The case of CeSb2 is illustrative of the procedure.  From the phase diagram, 

it should be noted that CeSb2 is in equilibrium with the melt up to 1500 ºC, up to 10 

atomic percent Ce can be dissolved in Sb at 1200 ºC, and at 630 ºC virtually all the Ce 

has been precipitated out in the form of CeSb2 and the remaining melt is solidified as 

nearly pure Sb.  Though 10 percent cerium can be accommodated, it is often 

advantageous to use a less concentrated solution.  A solution whose composition is too 

close to that of the target crystal will often produce many small and intergrown crystals.  
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In order to better control the nucleation and allow space for the crystals to grow, less 

cerium is used, and in this case a concentration of Ce0.05Sb0.95 was found to produce well 

formed crystals.  In order to avoid the solidification of the melt, the growth was ended at 

675 ºC, at which temperature the remaining liquid was decanted and large plate-like 

crystals of CeSb2 were revealed (Figure 3.2a) (Canfield, 1992) (Bud’ko,1998). 

The growth of crystals from an excess of one of the member elements is called a 

“self-flux” method, with the excess member acting as a flux to decrease the temperatures 

needed for growth.  This method works well for many crystals, but not for all.  As an 

example, consider CeSb.  From the phase diagram it is seen that the lowest temperature at 

which CeSb exists in equilibrium with the melt with no other phases present is around 

1500 ºC.  This is a rather high of a temperature for standard equipment and both cerium 

and antimony have large vapor pressures at this temperature.  Single crystals of CeSb 

         
 
Figure 3.2 (a) Photograph of a single crystal of CeSb2 grown from a self flux method.  
Notice the rectangular faceting on the face.  The circular shape is caused by the crystal 
growing against the side of the crucible which has a circular cross-section (see section 
3.2.4).  (b) Photograph of a single crystal of CeSb grown from a third element flux. The 
crystal has a cubic growth habit which is consistent with the cubic crystal structure of 
CeSb.  Both are on mm scales   
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have been grown from a mineralization technique, and many interesting phenomenon 

have been discovered but such crystals suffered from disorder and a lack of stoichiometry 

(Rossat-Mignod, 1977).  In order to make flux growth feasible for this compound a 

method had to be found that lowered the growth temperature to accessible regions.  This 

was done by the addition of a third element to the melt to act as a flux.  This is much like 

using H2O to grow crystals of NaCl well below its 800 ºC melting point.  Again, it was 

empirically determined that a concentration of (CeSb)0.06Sn0.94 heated to 1150 ºC and 

cooled to 800 ºC at which point the excess liquid was decanted revealed well formed 

cubic crystals (Figure 3.2.b) (Canfield, 1992).  Measurements on these crystals have 

revealed that they are of a higher quality than those previously grown (Wiener, 2000a).   

3.2.2. Ternary Compounds 

Ternary compounds can be grown from high temperature solutions in a manner 

similar to that of  binary compounds.  The largest difference is the general absence of 

published ternary phase diagrams for many systems of interest.  With 90 naturally 

occurring elements, there is a large number of possible binary combinations, and not all 

of them are published.  There are 117,480 possible ternary combinations and only a 

relative few systems are well quantified.  Because of this lack of knowledge about the 

liquidus surface and the corresponding peritectic eutectic temperatures, growth of  ternary 

(and higher) compounds is an even more empirical process.  Thus, initial attempts are 

based on studies of appropriate binary phase diagrams. 

For the growth of TbNi2Ge2, these diagrams would be Tb-Ni, Tb-Ge, and Ni-Ge 

(Figure 3.3).  It is unfortunate that the Tb-Ni diagram does not exist, but several binary 
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compounds of Tb-Ni are known to exist, as do several ternary compounds.  There is a 

broad eutectic trough in the Ni-Ge diagram with the eutectic at a composition of 

Ni0.33Ge0.67, and initial attempts were performed with this concentration as a flux.  From 

qualitative (crystal size, morphology, amount of flux on surface facets) and quantitative 

(resistivity, magnetization, powder x-ray diffraction) analysis of the resulting crystals, 

suitable initial concentrations and temperature profile were optimized.  This led to the use  

 
 

Figure 3.3 Phase Diagram for Ni-Ge (after Massalski,1992) 
 
 

of Ni0.5Ge0.5 as a flux rather than the eutectic composition.  A summary of the binary and 

ternary phases are shown in a ternary phase diagram (Figure 3.4).  Though there are many 

binary and ternary compounds in this system, it proved possible to grow large single 
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crystals of TbNi2Ge2, with an initial composition of Tb0.07Ni0.465Ge0.465.  Details of the 

growth are described in section 3.2.4.   
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Figure 3.4  Tb-Ni-Ge ternary phase diagram.  Circles represent known compounds and 
the * and arrow represents the starting melt composition for the growth of TbNi2Ge2.   
 
 

3.2.3. Psuedoternary Compounds 

A psuedoternary compound is an alloy on one or more sites of a ternary 

compound, in contrast to a quaternary compound which has a distinctive crystallographic  

site(s) for each particular element.  The underlying assumption behind this type of growth 

is that the physical and chemical processes controlling the precipitation of the crystal are 

unable to distinguish between chemically similar elements.  TbNi2Ge2 is amenable to this 

procedure in a couple ways.  It has been shown to be possible to substitute cobalt and 
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copper for nickel and thereby study the effects of band filing on the magnetic properties 

of the system (Wiener, 2000b).  More importantly, it is often possible to substitute one 

rare earth element for another.  This has led to many studies on the effects of deGennes 

scaling and the substitution of Heisenberg, Ising, and X-Y magnetic moments on the 

magnetic properties of many systems, such as RNi2BB2C (Cho, 1996) and R-Mg-Zn 

quasicrystals (Fisher, 1999).  As was mentioned in chapter 1, yttrium was chosen as the 

nonmagnetic as the counterpart to the terbium based on the observation that the lattice 

parameters of the two pure compounds, TbNi2Ge2 and YNi2Ge2, are very similar.  In 

substitution series, there is a concern that the actual composition may be different from 

the nominal concentration of the starting melt.  In this study, actual compositions were 

measured  to be close to the nominal concentrations for all x (see Chapter 5). 

3.2.4. Experimental Technique for Crystal Growth 

The growth of TbNi2Ge2 and its derivatives takes place in a well controlled 

environment.  Elemental starting materials with typical purities of 99.99 – 99.999 %  are 

placed in a 2ml or 5ml alumina crucible, which is called the “growth crucible”.  A second 

crucible is filled two-thirds full with quartz wool and inverted on top of the growth 

crucible.  The crucibles are then sealed in quartz tubing with a partial pressure of argon in 

order to prevent oxidation of the melt.  The growth is then placed inside a box furnace 

and heated to 1190 ºC.  The sample is then cooled slowly over a period of approximately 

100 hours to a temperature of 1000 ºC.  At this temperature the growth was stopped so as 

to avoid growing some of the possible phases present in the Ni-Ge phase diagram as 

impurities, and the crystals are separated from the remaining liquid.  This is easily done 
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by removing the quartz ampoule from the furnace and quickly inverting it into a 

centrifuge and spinning it for a few seconds.  During the spin, the quartz wool that was 

placed in the inverted crucible acts as a strainer, physically separating the crystals from 

the decanted flux.  A diagram of the temperature profile for the growth is shown in Figure  

3.5 (a).  Figure 3.5.(b) contains a schematic of the ampoule in which the growth takes 

place, showing the placement of crucibles, quartz wool, and the pure elements as 

described above.  Figure 3.6 shows an example of the crystals of TbNi2Ge2 grown in this 

manner.  They are relatively large and well shaped, having a plate-like morphology with 

typical dimensions of 4 mm × 4 mm × 1 mm, with the c-axis perpendicular to the plane of 

the plate (Islam, 1998).   

(a)                                                                                    (b) 
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Figure 3.5 (a) Temperature profile for the growth of single crystals of TbNi2Ge2 from 
an NiGe-rich flux.  At about 100 hours, the ampoule is removed from the furnace and 
the remaining flux is decanted from the desired crystals. (b) diagram of the ampoule 
used for crystal growth. 
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Figure 3.6  Photograph of a crystal of TbNi2Ge2 on a mm scale.  The morphology is 
consistent with the tetragonal crystal symmetry.  Also notice the small droplets of 
solidified residual flux on the surface, just right of center.  Significantly larger crystals 
can be grown by this technique.   
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4. EXPERIMENTAL METHODS 

4.1. Magnetization Measurements 

4.1.1. DC Magnetization 

DC magnetic measurements were performed in a Quantum Design Magnetic 

Property Measurement System (MPMS) Superconducting Quantum Interference Device 

(SQUID) magnetometer for temperatures between 1.8 and 350 K and fields up to 55 kOe.  

Samples were chosen for measurement based on size and lack of residual flux on the 

surface.  Sample masses varied from approximately 15 mg for pure TbNi2Ge2 to 62 mg 

for Tb.1Y.9Ni2Ge2.  These masses were chosen so as to provide a maximum magnetization 

of 1 emu at 55kOe, a value well below the 1.25 emu upper limit of the calibrated range of 

the system.  Occasionally, residual flux would be mechanically removed, either by 

scraping with a scalpel or polishing with a Buehler Minimet polisher with a fine polishing 

pad and powdered alumina in water.   

Samples were mounted inside two clear plastic drinking straws, the interior 

drinking straw having been fashioned in a manner useful for positioning the sample in a 

preferred orientation with respect to the applied magnetic field.   In order to hold the 

plate-like samples with the axis normal to the surface of the plate (the c-axis) so that it is 

parallel to the field direction, the interior straw was folded along its length and then cut in 

half.  The sample was then placed between the two halves, often sandwiched between 

two discs of weighing paper.  For measurements with the c-axis perpendicular to the field 

direction, the interior straw was slit along its length and an X was cut half way along its 
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length, opposite to the slit, with the lower flap of the X pried back to provide a ledge for 

the sample to rest on.  This method minimizes the background signal, although the 

contribution of the paper discs to the signal, although usually negligible, cannot be 

accurately subtracted.  

Measurements were performed either with a zero-field cooled or field cooled 

history.  In a zero-field cooled (zfc) measurement the sample is stabilized at a 

temperature well above any transition temperature in zero applied field.  The sample is 

then cooled to a temperature below the transition, usually 1.8 K.  At this temperature a 

field is applied and data is collected with increasing temperature.  In a field cooled (fc) 

measurement the sample is stabilized at a temperature above the transition in zero applied 

field.  A field is then applied and then the sample is cooled to its starting temperature, 

usually 1.8 K and data are taken with increasing temperature.     

4.1.2. AC Magnetization 

AC Magnetic measurements were performed in a Quantum Design MPMS 

SQUID magnetometer with an AC option.  This allows experiments to be performed in 

oscillating fields with an amplitude between 0 to 4 Oe and with frequencies between 0.01 

and 10000 Hz and an applied bias dc field up to 55 kOe.  Samples were measured only 

with the applied field parallel to the c axis and mounted in the same manner as for DC 

magnetization with the same orientation.   

4.1.3. Low Field Measurement Corrections 

During this study, it was noticed that problems arose in data taken at low 

magnetic fields.  In particular, measurements that were supposedly taken in the same low 
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field and in temperature ranges above any critical temperatures on the same sample, did 

not always coincide.  This leads to an apparent offset between the affected data sets.  This 

made analysis of the data extremely difficult, especially in the determination of the 

irreversibility temperature which was defined as the temperature at which the zero field 

cooled and field cooled data differed by 0.5 %.  In Figure 4.1 the zfc and fc dc 

susceptibility data for Tb0.60Y0.40Ni2Ge2 is shown.  These data were taken in a nominal 

field of 50 Oe.  The offset between the two data sets is about 1.3 % at 15 K, which is well 

above the Néel temperature of 8.4 K for this dilution.   

At this temperature both measurements should be identical.  Closer examination 

revealed that the offset is approximately constant between 10 and 20 K.  This indicated 

that the data could be made to coincide by an appropriate renormalization.  In low applied 
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Figure 4.1  raw data for the low field dc susceptibility of Y0.40Tb0.60Ni2Ge2 at 50 Oe.  
Circles are zfc data and squares are fc data.  Notice the large offset between the data at 
15 K.  



57 

fields, the susceptibility can be approximated by χ = M/H rather than the theoretical 

definition of the susceptibility being the derivative of the magnetization with respect to 

the applied field, it appeared that an acceptable method would be to normalize the data to 

the theoretical definition at a particular temperature. 

This was done by performing a measurement of the magnetization with respect to 

field at a temperature above the region of interest, in this case at 15 K.  The result of this 

can be seen in Figure 4.2(a).  At this temperature the magnetization is linear with respect 

to field and the slope is the susceptibility.  The experimental zfc and fc data were 

normalized to this value by the application of a multiplicative constant.  After 

normalization (Figure 4.2(b)) the offset has disappeared and the irreversibility 

temperature can be easily determined and is found to be about 7 K for this particular 
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Figure 4.2 (a) magnetization as a function of applied field at 15 K for Y0.40Tb0.60Ni2Ge2.  
(b) Low field dc susceptibility of Y0.40Tb0.60Ni2Ge2 at 50 Oe after normalization (see 
text).  Irreversibility between zfc (circles) and fc (squares) is more clearly seen than in 
Figure 4.1. 
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sample.  This procedure was performed on data taken from all samples measured for 

purposes of consistency.   

What is the origin of the above experimental problem?  One clue is found if we 

look at the values of the susceptibilities before and after normalization.  In the case of our 

example the values are approximately 40 % higher after normalizing.  This indicates that 

the assumed field of 50 Oe in which the measurement was performed was higher than the 

actual applied field.  In order for the experimental susceptibility, M/H, in Figure 4.1 to be 

equal to the susceptibility as determined from the slope of Figure 4.2(a), χ, the applied 

field can be determined from H = χ/M.  In this case the applied field is found to be about 

34.8 Oe for the zfc data and 35.3 Oe for the fc data.  Where does this 15 Oe difference 

come from?  In an attempt to understand this, measurements of the magnetization as a 

function of applied field were performed in different temperatures (Figure 4.3(a)).  This 

experiment was performed on Tb0.45Y0.55Ni2Ge2 after the SQUID had performed several 

other measurements with temperatures ranging from 1.8 to 350 K and fields from 0 to 55 

kOe.  As expected, the slopes of the various measurements decrease with increasing 

temperature, since the susceptibility is supposed to decrease with temperature.  In a 

perfect world, the magnetization should be zero in a zero applied field so that all these 

lines should cross at the point H = 0 Oe, M = 0 emu/g.  If they cross at a point H = 0 Oe, 

M ≠0 emu/g, this would indicate that there was a ferromagnetic component to the system, 

perhaps originating from some second phase impurities.  If the lines cross at a point H ≠ 0 

Oe, M = 0 emu/g, then there was a residual field present.  As can be seen here, the lines 

cross at a point H = 15 Oe, M = 0 emu/g.  Measurements were taken at higher 
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temperatures and they cross at the same point (not shown).  This means that a field of 15 

Oe had to be applied in order to achieve an effective field of 0 Oe, or there is a persistent 

field of 15 Oe which is opposed to the applied field.  Therefore an applied field of 50 Oe 

would be effectively reduced to 35 Oe, which is comparable to the values obtained for the 

effective fields seen in the previous case.   

Figure 4.3 (a) Magnetization as a function of applied field of Y0.55Tb0.45Ni2Ge2 at 
different temperatures as listed in figure. Notice that all the lines cross at approximately 
H = 15 Oe and M = 0 emu/mole-Tb.  (b) Magnetization as a function of applied field of 
Y0.55Tb0.45Ni2Ge2 at different temperatures as listed in figure with SQUID being 
demagnetized between runs. Notice that all the lines cross at approximately H = -1.5 Oe 
and M = 0 emu/mole-Tb 
 
 

In an attempt to reduce this residual field, the SQUID was run through a 

demagnetization sequence in order to reduce the trapped field in a superconducting 

magnet.  M(H) runs were performed for the same temperatures and on the same sample 

as in Figure 4.3(a) with the exception that the SQUID was demagnetized before each run.  

Figure 4.3(b) shows the results of this experiment.  From this it can be concluded that 
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even after being demagnetized, there is still a remnant field though it is reduced 

significantly to approximately 2 Oe and parallel to the direction of the applied field. 

Measurements at higher temperatures are similar (not shown).  In both of these figures it 

is noticed that the lines tend to cross at a value of M that is slightly greater than 0 emu/g.  

This could indicate that there is a small amount of ferromagnetic impurities present. This 

would not be too surprising since both terbium and nickel are ferromagnetic at these 

temperatures and therefore the small amount of flux that adhered to the surface of the 

crystals or was trapped in small pockets inside the crystal could contribute a small 

ferromagnetic component. 

Another measurement problem that occurs is the difficulty of performing 

measurements between 4.2 and 4.4 K in the SQUID magnetometer.  This is associated 

with the boiling point of liquid helium at 4.2 K.  The magnetometer has two modes of 

temperature control, one for temperatures above this point and another for below.  

Neither method works well at temperatures near this point and the magnetometer 

becomes unstable in temperature.  Due to this problem, various features may be seen in 

both magnetization and resistivity data around 4.4 K.  In many measurement there is a 

gap in the data for this region.  In others, sharp features may be seen, but they are 

probably manifestations of this temperature instability and are therefore ignored.   

 

4.2. Resistivity 

Resistivity measurements were made with the standard four-probe technique 

within the temperature and magnetic field environment of the Quantum Design MPMS.  
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Samples used for measurement were shaped with a wire saw using a 0.005 inch diameter 

wire with 600 grit silicon carbide powder suspended in a water and glycerol solution.  

Sometimes in was also necessary to polish the samples using a Buehler Minimet polisher 

with a fine polishing pad and powdered alumina in water in order to remove residual flux 

and to remove steps from the surface.  Platinum wires with a 0.025 mm diameter were 

attached to the samples using Epotek H20E silver epoxy and cured at 120 ºC for 30 

minutes.  Typical contact resistances were between 1 and 2 Ω. A typical resistance bar is  

shown in Figure 4.4. Uncertainty in the measurement of the cross-sectional area and 

distance between voltage contacts are the major source of uncertainty in these 

measurements, limiting the precision of the resistivity to around 10%.  The resistance of 

the samples was measured using a LR-400 AC bridge operating at a frequency of 15.9 Hz 

and an excitation current of 3 mA.  The data acquisition was controlled and saved by 

 
 
Figure 4.4  Photograph of a sample of Y0.20 Tb0.80Ni2Ge2 shaped into a resistivity bar 
with platinum wires attached with silver epoxy (see text), on a mm scale.  The c-axis is 
out of the page.   
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External Device Control (EDC), an extension to the MPMS operating system. 

 

4.3. Specific Heat 

Specific heat measurements were performed using the heat capacity option of the 

Quantum Design Physical Property Measurement System (PPMS).  This option uses a 

relaxation technique in which the sample is briefly heated and then allowed to cool.  The 

system was typically allowed to cool over 1.5 to 2 time constants in order to achieve 

maximum accuracy within a reasonable amount of time.  The response of the sample was 

then fit using a model that accounts for the thermal relaxation of both the sample and the 

sample platform with grease.  Samples were affixed to the platform using Apiezon N 

grease.  The thermal response of the platform and grease was measured first to allow for 

the subtraction of this contribution to the final measurement.  The thermal contact of the 

sample to the environment was minimized by evacuating the sample chamber to 

approximately 0.01 mTorr.  Samples for measurement were chosen on the basis of size, 

typically being about 3 mm by 3 mm, and the flatness of one face, which aids in the 

thermal contact of the sample to the sample platform.   

In order to study the magnetic contribution to the specific heat that portion which 

is due to the electrons and lattice must be subtracted out.  The simplest method is to have 

a suitable nonmagnetic material that is similar to the magnetic material being studied.  A 

first choice would be YNi2Ge2.  The yttrium compound was chosen for this dilution series 

because it is structurally similar to TbNi2Ge2, and therefore its specific heat should be a 

good approximation.  There are two other possible choices as well.  It has been shown 
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that the specific heat of LaNi2Ge2 and LuNi2Ge2 are nearly identical up to at least 50 K 

(Bud’ko, 1999).  This shows that the slight differences in lattice parameters and masses 

between the lanthanum and lutetium compounds do not have a significant effect on the 

specific heat.  This means that the nonmagnetic part of the specific heat of TbNi2Ge2 is 

best fit by either LaNi2Ge2 or LuNi2Ge2.  Figure 4.5 shows a comparison of the specific 

heat of the lanthanum and yttrium compounds.  Whereas lanthanum and lutetium 

compounds are identical, the yttrium compound has a very different temperature 

dependence.  This difference may be due to the difference in masses between the two 

substances, and the Debye model suggests a simple scaling of the masses should make 

the specific heats the same (Chernikov, 2000).  This is not the case and the specific heat 

of yttrium could not be simply scaled onto the lanthanum data.   

Therefore it appears that the best choice to account for the nonmagnetic 
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Figure 4.5.  Temperature dependent specific heat, CP, for (circles) LaNi2Ge2 and 
(squares) YNi2Ge2    
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component of the specific heat of the terbium compound is to use lanthanum.  On the 

other hand, this can not be used for the entire dilution series since at low concentrations 

of terbium the specific heat will be due primarily to the yttrium in the compound.  A 

plausible compromise is to subtract off that part of the nonmagnetic specific heat due to 

the yttrium using the yttrium data and to subtract off that part of the nonmagnetic specific 

heat due to the terbium using the lanthanum data.  This leads to the formula 

 
Cp-mag(Y1-xTbxNi2Ge2) = Cp(Y1-xTbxNi2Ge2) – (1-x)Cp(YNi2Ge2) – Cp(LaNi2Ge2)   
  

which was used for all specific heat data presented in this study. 
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5. Y1-xTbxNi2Ge2 (0<x<1) 

5.1. Introduction 

In this chapter some of the experimental results of this study are presented.  In 

section 5.2 the experimental features of the end members of the series, pure TbNi2Ge2 

and pure YNi2Ge2, are shown and discussed.  In the section 5.3, the major features of the 

dilution series are presented and a temperature-composition phase diagram is introduced. 

This phase diagram is broken up into four regions.  Sections 5.4 through 5.7 will look at 

representative compositions of several of these regions.  The region of the dilution series 

that displays spin glass properties will be looked at in greater detail in chapter 6.    

 

5.2. TbNi2Ge2 and YNi2Ge2 

Recent studies have shown that the compound TbNi2Ge2 has many low 

temperature magnetically ordered states depending on temperature and applied field 

(Bud’ko, 1999; Islam, 1998).  Figure 5.1(a) shows the DC susceptibility measured in 1 

kOe from 2 K to 350 K with the field applied parallel (χ||) to and perpendicular (χ⊥) to the 

c-axis.  It appears that the compound is Ising-like with the moments parallel to the c-axis. 

This has been confirmed by neutron diffraction studies (Islam, 1998).  The feature seen in 

χ⊥ at ~ 45 K is due to thermal population of higher energy CEF levels.  Figure 5.1(c) 

shows the low temperature portion of dc susceptibility, which clearly shows the two 

antiferromagnetic transitions in χ||.  No transitions are seen in χ⊥.  Figure 5.1(d) shows 
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Figure 5.1.  (a) Anisotropic temperature dependent dc susceptibility of TbNi2Ge2 at 1 
kOe for field applied parallel to the c-axis (squares) and perpendicular to the c-axis 
(circles).  (b)  Inverse dc susceptibility for field parallel (squares) and perpendicular 
(circles) to the c-axis and for polycrystalline average (*).  The solid lines are fits to the 
Curie-Weiss law at temperatures above 150 K extrapolated to low T.  (c) Low 
temperature part of the susceptibility.  (d) Plot of d(χT)/dT as a function of temperature 
with a field of 1 kOe applied parallel to the c-axis. 
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d(χT)/dT for H||c as a function of temperature.  This is thought to be proportional to the 

magnetic specific heat near an antiferromagnetic transition (Fisher, 1962).  For this 

reason transition temperatures will be determined from the peaks in this function.  Both 

transitions are prominently displayed by lambda-like peaks, similar to what one might 

expect from the specific heat.  The transition temperatures determined from these peaks 

are TN = 16.6 ± 0.1 K and Tt = 9.4 ± 0.1 K, where the nomenclature for the transitions is 

following that of reference (Islam, 1998).   

The high temperature DC susceptibility has been fit to a modified Curie-Weiss 

law,  

           C 
χ = ⎯⎯⎯ + χ0                                                                                        (5.1) 

         (T-θ) 

 where C is the Curie constant, θ is the Weiss temperature, and χ0 is a temperature 

independent term.  This last term reflects the temperature independent contributions to 

the total susceptibility, such as Pauli and Van Vleck paramagnetism, the diamagnetism of 

the ionic cores, and other effects that might arise from the experimental environment, 

such as the slight gap between the straws and the paper holding the samples.  These 

contributions are negligible for pure TbNi2Ge2 as the paramagnetic contribution from the 

Tb3+ moments is much larger.  This can be seen in Figure 5.1(b), which shows the inverse 

susceptibility as a function of temperature, where the solid lines are fits to Equation 5.1 at 

temperatures above 100 K.  Below 100 K there are significant deviations from Curie-

Weiss behavior.  As the terbium is diluted with yttrium in the series, these secondary 

sources will become increasingly more significant.   
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Fits to this equation were made to the susceptibility with the applied field parallel 

and perpendicular to the magnetic easy axis (c-axis), as well as to the polycrystalline 

average.  The polycrystalline average was determined by the following equation,  

                       (χ|| + 2χ⊥) 
χpoly = ⎯⎯⎯⎯ .                                                                                               (5.2) 

                              3 

This is done so as to remove the effects of CEF splitting, at least to first order, 

from the determination of the effective moment and the Weiss temperature 

(Boutron,1973; Dunlap, 1983).  This is also seen in Figure 5.1(b) where deviations from 

Curie-Weiss behavior begin at a lower temperature than for H⊥c and H||c.  For TbNi2Ge2 

θ|| = 12.0 ± 2 K, θ⊥ = -50.7 ± 10 K, θpoly = -14.6 ± 5 K, and the effective moment per 

terbium ion is 9.7 μB, which are also in agreement with previously published results 

(Bud’ko, 1999) and is comparable to the theoretical value of 9.72 μB for the Tb3+ ions.  

Figure 5.2 shows the results of zero field resistivity measurements as a function of 

temperature.  The resistivity is metallic with a residual resistance ratio defined as 

                        ρ(300 K) 
 RRR = ⎯⎯⎯⎯ ,                                                                                              (5.4) 
                        ρ(2 K) 

has a value of RRR = 4 for this compound ((a) inset).  The low temperature resistivity (a) 

displays two kinks at the transition temperatures due to the loss of spin disorder scattering 

as the terbium moment become ordered.  The derivative of the resistivity with respect to 

temperature (b), which is also considered to be proportional to the magnetic specific heat 

(Escorne, 1981), shows two sharp lambda-like peaks at TN = 16.6 ± 0.1 K and Tt 9.3 ± 

0.1 K which are similar in value to the peaks seen in d(χT)/dT.  
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Figure 5.3(a) shows the magnetic specific heat, Cp-mag, with respect to temperature 

of the magnetic component of TbNi2Ge2.  This was accomplished by subtracting the 

specific heat of LaNi2Ge2, which being nonmagnetic only consists of electronic and 

lattice contributions, from the specific heat of TbNi2Ge2 to isolate the magnetic 

contribution.  Again, the two transition are clearly seen by lambda-like peaks and occur at 

TN = 16.55 ± 0.05 K and Tt = 9.65 ± 0.05 K.  Comparing the specific heat with d(χT)/dT 

and dρ/dT, it can be seen that these later functions do have similarities to the specific 

heat, though are not perfect imitations of it.  With this said, all transition temperatures 

stated in this paper will be determined from the peaks in d(χT)/dT, unless otherwise 

noted.  From these three measurements, specific heat, resistivity, and susceptibility, The 
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Figure 5.2.  (a) Low temperature part of the zero-field temperature dependent resistivity 
of TbNi2Ge2.  Inset show resistivity up to 300 K.  (b) Low temperature part of dρ/dT as 
a function of temperature. 
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transition temperatures are determined to be TN = 16.6 ± 0.1 K and Tt = 9.45 ± 0.2 K 

where the uncertainties reflect the differences in values from all three methods.   
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Figure 5.3.  (a) Low temperature part of the zero-field magnetic specific heat as a 
function of temperature of TbNi2Ge2.  (b) Magnetic entropy as a function of 
temperature.  The solid lines show total theoretical magnetic entropy Rln13 and 
magnetic entropy of a doublet ground state, Rln2.  
 
 

Figure 5.3(b) shows the magnetic entropy as a function of temperature where the 

solid lines show the entropy of psuedodoublet ground state, Rln2, and the total expected 

entropy of Rln13.  The low temperature specific heat follows a T3, which is typical of 

antiferromagnetic systems and is due to magnons and this same dependence was 

extrapolated down to 0 K to determine the entropy.  As can be seen, the transitions at 

9.65 K and 16.55 K  removes only a little more entropy than that of Rln2.  Another large 

portion of the entropy is removed by 50 K through the population of another set of CEF 

levels around 45 K (Islam, 2000).  Since the entropy has not reached its maximum value 
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of Rln13 by 50 K, it is likely that other Schottky-like anomalies exist at higher 

temperatures.  This behavior is consistent with the ordering of the CEF split ground states 

for T < TN.  In comparison the unsplit GdNi2Ge2 shows almost full removal of Rln8 at TN 

(Bud’ko, 1999). 

Figure 5.4 shows low temperature, field stabilized, metamagnetic states in both 

(a) magnetization and (b) resistance measurements with the field applied parallel to and 

perpendicular to the c-axis.  These measurements were performed with increasing field to 

avoid the complications of hysterisis effects (Bud’ko, 1999).  Six metastable states can be 

discerned (with the application of a slightly higher field one more transition occurs into 

the saturated moment state).  It is clearly seen form these measurements, as well as from 
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Figure 5.4.  (a) Field dependent magnetization at 2 K for TbNi2Ge2 with the field 
applied parallel (squares) and perpendicular (circles) to the c-axis.  (b) 
Magnetoresistance at 2 K for fields applied parallel (squares) and perpendicular (circles) 
to the c-axis.   
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the temperature dependent susceptibility measurements, that this compound is anisotropic 

with an easy axis along the c-axic (normal to the surface of the crystal) with little 

coupling between the applied field and the local moment sublattice when the field is 

applied perpendicular to the c-axis 

Another way to measure this anisotropy is shown in Figure 5.5(a).  Here the 

results of rotating a sample of Y0.99Tb.01Ni2Ge2 around an axis that runs through the plane 

of the sample and perpendicular to the applied field of 55 kOe and at 2 K.  In this way the 

plane of the sample sweeps through an angle (θ) with respect to the applied field.  Since 

the magnetometer measures the projection of the magnetic moment along the field 

direction, the magnetization as a function of angle should follow a M|sinθ| dependence, 
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Figure 5.5.  (a) Magnetization as a function of the angle (θ) between the applied field 
and the plane of the crystal for composition x = 0.01 at 55 kOe.  The solid line shows fit 
of the projection of the magnetization as a function of angle, as described in the text.  
(b) Magnetization as a function of field applied parallel (squares) and perpendicular 
(circles) to the c-axis for x = 0.01.   
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which is verified by the solid line which is a fit to this function.  This confirms that the 

magnetically easy axis lies along the c-axis.  Figure 5.5(b) shows the magnetization as a 

function of field for the same sample with the field applied parallel and perpendicular to 

the c-axis for comparison.  These measurements show that the anisotropy is purely a 

single ion effect associated with the CEF splitting.  

Figure 5.6(a) shows the temperature dependent DC susceptibility at 1 kOe and the 

field dependent magnetization at 2 K of YNi2Ge2 for fields applied parallel and 

perpendicular to the c-axis.  The susceptibility shows practically temperature independent 

Pauli-like paramagnetic behavior.  At low temperature there is a slight upturn in M/H 

which may be associated with a small concentration of paramagnetic impurities.  By 

fitting the upturn  to Curie-Weiss law these impurities are estimated to be about 1 terbium 
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Figure 5.6.  (a) Anisotropic temperature dependent dc susceptibility of YNi2Ge2 for a 10 
kOe field applied parallel (squares) and perpendicular (circles) to the c-axis.  Inset 
shows anisotropic field dependent magnetization at 2 K.  (b) Zero-field resistivity as a 
function of temperature.   
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ion out of every 90,000 yttrium ions, which is close to the expected purity level of 

0.9999.  The susceptibility is weakly anisotropic with χ|| > χ⊥.Magnetization data at 2 K 

are nearly linear up to 55kOe (inset)  The zero field temperature dependent resistivity is 

shown in Figure 5.6(b).  The resistivity is metallic in character with a residual resistance 

ratio RRR of about 4 which is similar to that of TbNi2Ge2 (Bud’ko, 1999).   

 

5.3. The Y1-xTbxNi2Ge2 Series 

As x is increased in the system TbxY1-xNi2Ge2, several interesting features appear.  

Perhaps the most important features can be addressed from a study of the changes in the 

characteristic temperatures as a function of composition (x).  This is can be seen in Figure 

5.7, where the two Neel temperatures (TN, Tt), introduced in the previous section, and the 

irreversibility temperature (Tir) are plotted.  The irreversibility temperature is defined as 

the temperature at which the zero-field cooled (zfc) magnetization and the field-cooled 

(fc) magnetization differ by 0.5%. For a clear example of this see Figure 5.14(a).  Based 

on these data we can divide the system into four main parts.   

The first part is the region 0.75<x<1.0.  In this region both antiferromagnetic 

transitions exist, along with an irreversibility temperature.  The second region has only 

the first transition and irreversibility temperatures and occurs when x is between 0.45 and 

0.75.  The third region is defined by 0.375<x<0.45, where the antiferromagnetic 

transition and the irreversibility temperature coincide.  The final region is defined by 

x<0.375.  In this region there is no indication of antiferromagnetism and the 

irreversibility takes on many of the characteristics of a magnetic spin glass.  The 
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concentrations below x = 0.20 may be considered that portion of the map similar to 

regions medieval cartographers labeled as “here there may be dragons”.  If there are 

features present at these concentrations, they take place at temperatures below 2 K, which 

are inaccessible to the techniques used in this study.   
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Figure 5.7.  Temperature-composition phase diagram for YxTb1-xNi2Ge2.  Temperatures 
plotted are the high temperature antiferromagnetic transition (TN, circles), low 
temperature antiferromagnetic transition (Tt, squares), and irreversibility temperature 
(Tir, triangles) as described in the text.  The dashed vertical lines delineate the four 
regions of interest as mentioned in text. 
 
 

As can be seen in Figure 5.7, the high temperature antiferromagnetic transition 

(TN), is approximately linear with respect to the concentration of terbium (x).  Magnetic 
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transitions are expected to scale with respect to the deGennes factor in rare earth 

intermetallic compounds, which in a dilution series scales with x.  

Weiss temperatures (θ) were determined from the high temperature dc 

magnetization in the manner described in section 5.2.  These are shown in Figure 5.8(a).  

θ|| is positive for all values of x and decreases in a linear fashion with x.  θ⊥ is negative 

for all values of x and tends to increase in magnitude with decreasing x.  The scatter in 

values for θ⊥ most probably reflects slight deviations in the applied field from being 

perfectly perpendicular to the c-axis.  Since χ|| >> χ⊥, a small contribution of χ|| to χ⊥ will 

have a much stronger effect than a small contribution of χ⊥ will have on χ||.  Because of 

this, all that can really be said is that θ⊥ is strongly negative and compared to the positive 
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Figure 5.8.  (a) Weiss temperatures (θ) as a function of composition (x) with field 
applied parallel (squares), perpendicular (circles) to the c-axis and polycrystalline 
average (diamonds).  Lines are a guide to the eye.  (b) Effective moment as determined 
from fits to Curie-Weiss law of polycrystalline average as a function of composition (x). 
Solid line shows calculated effective moment of 9.72 μB.   
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values of θ|| this compound is highly anisotropic for all values of x.  θpoly is also negative 

for all values of x and tends to decrease in magnitude with decreasing x.  This is 

consistent with TN decreasing in the same manner.   

The effective moment per terbium ion, as determined from fitting χpoly to the 

modified Curie-Weiss law as explained above, is close to the theoretical value of 9.72 μB 

for all values of x (Figure 5.8(b)).  There seems to be a small systematic increase in the 

effective moment for values of x greater than 0.4.  Between x = 0.2 and x = 0.35, the 

effective moment is very close to the theoretical value and this region corresponds to the 

region that displays spin glass behavior.  The more erratic values for the peff for values of 

x < 0.2 may be explained by the actual dilution concentration not being the same as the 

nominal concentration and even one percent makes a large difference at small 

concentrations.  

Conversely, in a similar manner, the concentration of terbium in the samples was 

also determined from the high temperature polycrystalline susceptibility.  This was done 

by fixing the effective moment at 9.72 μB and calculating how much terbium would be 

needed to achieve that value.  The concentration was also measured directly by electron 

microprobe analysis (EMPA) for nominal concentrations of x = 0.0, 0.20, 0.40, 0.60, 

0.80, and 1.0.  The results are seen in Figure 5.9.  The solid line is the nominal 

concentration.  The EMPA data lies close to the nominal values, with only a very slight 

positive deviation of about 2 % at x = 0.60.  For concentrations between 0.20<x<0.40, the 

concentrations derived from susceptibility measurements follow the nominal and EMPA 

values.  Above x = 0.40 the susceptibility values vary greatly from the nominal values, 
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reaching the unlikely value of 105 % at x = 0.90.  This large deviation reflects the 

elevated effective moments already seen for this region.  Because the EMPA values 

compare well with the nominal values, the nominal values of x will be used throughout 

this work  
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Figure 5.9.  Plot of concentration determined experimentally versus nominal 
concentration.  Solid line is nominal concentration, squares are the concentrations 
determined from high temperature Curie-Weiss fits.  Circles are concentrations 
determined from EMPA.  . 
 
 

To summarize the data derived from high temperature Curie-Weiss fits, the 

effective moment per terbium ion stays consistent with its theoretical value of 9.72 μB,  

the Weiss temperatures change systematically, and the system stays Ising-like throughout 

the dilution series (see Figure 5.5)  This means that the changes in the transitions and in 

the low temperature ground state are due to dilution only.  In the rest of this chapter, the 
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first three of these regions will be examined by looking at a representative composition 

from each.  The fourth region, where spin glass like features emerge, will be more closely 

examined in chapter 6.   

 

5.4. Region I: 0.75 < x < 1.00 

Y0.10Tb0.90Ni2Ge2 is a representative of the compounds with the greatest terbium 

concentration (high x).  Figure 5.10 shows the low temperature part of the dc 

susceptibility as a function of temperature for the field applied parallel to the c-axis for 

both zfc and fc histories.  For the zfc data the sample was cooled in zero applied field to 2 
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Figure 5.10. (a) Low temperature dc magnetization for zfc (circles) and fc (squares) 
histories with a field of 50 Oe applied parallel to the c-axis, for composition x = 0.90.  
Note that these data are almost indistinguishable on this scale  Inset shows percent 
difference between zfc and fc magnetization as a function of temperature, with solid line 
showing 0.5 % criterion.  (b) Plot of d(χT)/dT as a function of temperature with field a 
field of 50 Oe applied parallel to the c-axis.  
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K and then a field of 50 Oe was applied.  For the fc data, a field of 50 Oe was applied at 

30 K, and then the sample was cooled to 2 K.  The two antiferromagnetic transition 

temperatures, TN and Tt, are still prominent.  At low temperatures, no irreversibilities can 

be seen by eye, but if the two data sets are subtracted from each other, differences can be 

seen as shown in the inset to (a).  The solid line shows the somewhat arbitrary 0.5% 

criterion used to determine the irreversibility temperature, Tir.  In this case Tir = 3.0  ± 0.5 

K.  The cause of this irreversibility is unknown.  If another criterion had been chosen, 

then possibly this would not have been considered an irreversibility.  The d(χT)/dT is 

shown in (b).  Here the transitions are again displayed by two lambda-like peaks, though 

not as sharp as those seen in TbNi2Ge2 (Figure 5.1(d)).  The temperature of the transitions 

as determined from these peaks are 14.5±0.2 K and 8.6+0.1 K.   
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Figure 5.11. (a) Low temperature zero-field resistivity as a function of temperature for 
composition x = 0.90.  Inset shows the resistivity up to 300 K.  (b) Plot of low 
temperature part of dρ/dT as a function of temperature. 
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Figure 5.11 shows the zero-field temperature dependent resistivity for this 

concentration.  The RRR is again around 4, as is seen in (a) which shows the resistivity 

up to 300 K.  The low temperature part of the resistivity is seen in (b).  The upper 

transition, associated with TN, is seen as a large decrease in the resistivity due to the loss 

of spin disorder scattering, as was seen in TbNi2Ge2.  The transition associated with Tt is 

not clearly seen, though there is a slight feature seen at roughly 8.5 K, close to the value 

determined from d(χT)/dT.  The transitions in this measurement for this compound are 

not as clearly defined as they were for the parent compound which is consistent with the 

results of the dc susceptibility measurements.  The gap seen at ~4.4 K is due to 

measurement difficulties associated with the boiling point of helium.   

Measurements of the specific heat were performed and the magnetic contribution 
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Figure 5.12. (a) Magnetic contribution to the specific heat as a function of temperature 
for composition x = 0.90.  (b) magnetic entropy as a function of temperature.  Solid line 
marks Rln13.   
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is shown in Figure 5.12(a).  The magnetic specific heat was determined by subtracting a 

linear combination of the specific heat of yttrium and the specific heat of lanthanum, as 

was described in chapter 4.  Similar to the pure terbium compound, at low temperatures 

there is a T3 dependence, due to antiferromagnetic magnons, which was likewise 

extrapolated to 0 K to determine the entropy.  Both transitions are clearly seen at the 

temperatures determined from d(χT)/dT.  The entropy (b) is very similar to that of the 

pure compound. 

Another example from this region is that of the composition with x = 0.80.  Figure 

5.13(a) shows the low temperature zfc and fc dc susceptibility, performed in the same 

way as before.  Here the irreversibilities are more prominent.  (b) shows d(χT)/dT of the 
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Figure 5.13.  (a) Low temperature dc magnetization for zfc (circles) and fc (squares) 
histories with a field of 50 Oe applied parallel to the c-axis, for composition x = 0.80.  
Inset shows percent difference between zfc and fc magnetization as a function of 
temperature, with solid line showing 0.5 % criterion.  (b) Plot of d(χT)/dT as a function 
of temperature with field a field of 50 Oe applied parallel to the c-axis.  
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same sample. Here the transition to the lower ordered state, Tt, is a broad shoulder rather 

than a peak.  The temperature for this transition is approximately 5.2 K ±0.5 K.  Below 

this concentration, it becomes impossible to define a transition temperature for this 

magnetic state by magnetization measurements. 

 

5.5. Region II: 0.45 < x < 0.75 

In this region of the temperature-concentration phase diagram, the features 

associated with the lower antiferromagnetic transition are no longer present in 

susceptibility, resistivity, or specific heat measurements.  This is illustrated by the 

magnetic behavior of the compound Y0.40Tb0.60Ni2Ge2.  The low temperature dc 
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Figure 5.14. (a) Low temperature dc magnetization for zfc (circles) and fc (squares) 
histories with a field of 50 Oe applied parallel to the c-axis, for composition x = 0.60.  
Inset shows percent difference between zfc and fc magnetization as a function of 
temperature, with solid line showing 0.5 % criterion.  (b) Plot of d(χT)/dT as a function 
of temperature with a field of 50 Oe applied parallel to the c-axis.  
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susceptibility for zfc and fc histories is shown in Figure 5.14(a).  There is a broad peak at 

about 10 K and the low temperature irreversibilities can be discerned quite easily, with a 

Tir = 6.8±0.3 K.  The feature representing the lower transition, which changed from a 

sharp peak in the pure compound to a rounded shoulder as yttrium was alloyed onto the  

terbium sites as seen in the previous section, has completely disappeared in (b) d(χT)/dT, 

leaving only one peak which is located at 8.4±0.1 K which is associated with TN.   

The zero field temperature dependent resistivity at low temperature also displays 

only one feature due to loss of spin disorder scattering (Figure 5.15(b)) and is located at 

approximately 8.5 K.  For now note that the resistivity just above the transition is nearly 

horizontal as compared to the previous samples..  The residual resistance ratio is again 

approximately 4, as can be seen in Figure 5.15(a).  Recall that the RRR’s for both 

TbNi2Ge2 and YNi2Ge2 are also close to a value of 4, indicating that impurity scattering 
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Figure 5.15.  (a) Zero-field resistivity as a function of temperature for composition x = 
0.60.  (b) Low temperature part of the zero-field resistivity. 
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due to the substitution of yttrium on the terbium sites is insignificant in comparison to the 

impurity scattering that is already present in the crystals that have been grown.   

Figure 5.16(a)  shows the magnetic component of the specific heat, determined in 

the same manner as described above.  The peak is located at 8.6 K, which is comparable  

to the values derived from d(χT)/dT. There is no evidence of a second transition at lower 

temperature.  The temperature dependence at low temperature follows a T3/2 dependence, 

which was extrapolated to 0 K for the determination of the entropy.  This temperature 

dependence is consistent with either a spin glass state (Thomson, 1981) or ferro- or 

ferrimagnetic magnons.  This change in power law also takes place as we change from a 

commensurate low temperature state to one of incommensurate order.  This also has a 

large effect on the magnons.  In any case, our subtraction is based more on empirical 
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Figure 5.16.  (a) Magnetic contribution to the specific heat as a function of temperature 
for composition x = 0.60.  (b) Magnetic entropy as a function of temperature.  Solid line 
shows position of the theoretical magnetic entropy for Tb3+ ion, Rln13, and the entropy 
of a degenerate two level ground state, Rln2. 
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observation than theoretical justification.  Figure 5.16(b) shows the magnetic entropy.  At 

the transition only Rln2 amount of the entropy is frozen out and then the entropy levels 

out before rising again in the same manner has as been seen for the other compounds.  

This value of the entropy (Rln2) is consistent with there being a doublet or psuedodoublet 

ground state in this compound, which is necessary for the existence of an Ising spin glass 

[Aeppli].  

 

5.6. Region III: 0.375 < x < 0.45 

In this concentration range there appears to be a crossover from predominantly 

antiferromagnetic order to a spin glass state at low temperatures.  This can be seen in the 
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Figure 5.17. (a) Low temperature dc magnetization for zfc (circles) and fc (squares) 
histories with a field of 50 Oe applied parallel to the c-axis, for composition x = 0.45.  
Inset shows percent difference between zfc and fc magnetization as a function of 
temperature, with solid line showing 0.5 % criterion.  (b) Plot of d(χT)/dT with as a 
function of temperature with field a field of 50 Oe applied parallel to the c-axis.  
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low temperature zfc and fc magnetization with a field of 50 Oe applied parallel to the c-

axis (Figure 5.17(a)).  The irreversibility is now prominent at all temperatures below the 

transition temperature, which in this case is TN = 5.95 ± 0.1 K.  Using the 0.5 % criterion, 

the irreversibility temperature is determined to be 5.7 ±0.1 K as seen in the inset to (a).  

The d(χT)/dT is shown in (b).  The shape is becoming distorted from what has been seen 

before.   

The resistivity is shown in Figure 5.18, with the full temperature resistivity shown 

in (a).  This shows that the RRR ~ 3.6 which is consist with the previous the RRR’s of the 

previously seen dilutions.  The low temperature resistivity (b) shows a curious upturn in 

the resistivity below about 11 K.  This upturn in resistivity is similar to what is seen in 

ρ(T) for a spin glass (see section 6.2.5) for T>Tf and may be indicative of the clustering 

of the terbium moments before the ordering takes place.  The fact that there is still a sharp 
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Figure 5.18.  (a) Zero-field resistivity as a function of temperature for composition x = 
0.45.  (b) Low temperature part of the zero-field resistivity.   
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feature in the resistivity at TN is consistent with an actual long range order.  Also recall 

that the resistivity for x = 0.60 was also curiously flat just above TN.  That could mean 

that cluster formation is beginning even in that concentration, though not to the extent 

seen here.  

The magnetic specific heat is shown in Figure 5.19(a).  The peak is still fairly 

sharp and is located at about 6.15±0.1 K which is similar to the value found in the 

d(χT)/dT.  the low temperature specific heat has a T3/2 dependence, similar to the x =  

0.60 sample, and this was extrapolated to 0 K to determine the magnetic entropy (b).  The 

high temperature entropy is similar to that seen before.  At the transition temperature, 

almost all of the Rln2 entropy of the doublet ground state is frozen out.   
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Figure 5.19.  (a) Magnetic contribution to the specific heat as a function of temperature 
for composition x = 0.45.  (b) Magnetic entropy as a function of temperature.  The solid 
line shows value of Rln13 and Rln2.   
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Before continuing on to region IV it is perhaps useful to try to determine where 

the boundary line is between regions III and IV.  This was accomplished by comparing 

d(χT)/dT for fc and zfc data for each concentration.  This is seen in Figure 5.20 for 

concentrations (a) x = 0.40, (b) x = 0.375, (c) x = 0.35, and (d) x = 0.30.  For the x = 0.40 

composition there is very little difference between fc and zfc data, which has been the 

case for all higher concentrations as well.  The sharp peak corresponds to a transition 

temperature of TN = 4.7 K.   

A divergence between fc and zfc data begins to form for the 0.375 composition 

near the transition, which in this case is 4.2 K.  A sharp peak is still clearly seen in both fc 

and zfc data.  In (c) no sharp peak is observed in the fc data and the data levels off into a 

plateau while there is still a prominent peak in the zfc data.  Likewise for x = 0.30, there 

is a plateau rather than a peak in fc data and a prominent peak in the zfc data.  The 

scattered points at the lowest temperatures is due to performing a derivative at with 

nonuniform temperature spacing.  In this region the difficulty in stabilizing the 

temperature of the SQUID (around 2.2 K) leads to large changes in the zfc susceptibility 

because of its time dependence in the spin glass state.  Due to the lack of a peak in the fc 

data which also leads to the divergence between zfc and fc data, it is determined that 

concentrations of x = 0.35 and below lie in region IV and concentrations above that lie in 

Region III. 
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Figure 5.20.  Plots of d(χT)/dT for zfc (circles) and fc (squares) for H||c at 50 Oe.  (a) At 
x = 0.40 there is not much difference between fc and zfc data and sharp peak determines 
TN = 4.7 K.  (b) For x = 0.375 the difference is greater and there is still a sharp peak in 
the fc data corresponding to TN = 4.2 K.  (c) At x = 0.30 the difference is very great and 
there no strong peak in fc, just a plateau.  (d) Likewise for x = 0.25, big difference 
between fc and zfc data and no peak in fc data. 
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5.7. Conclusion 

 In this chapter, some of the experimental features of the TbxY1-xNi2Ge2 series 

have been explored for the higher terbium concentrations (x).  Before examining the 

results for the lowest concentrations, it might be worthwhile to summarize what has been 

discussed up to this point.  It has been seen that the antiferromagnetic order that exists in 

the TbNi2Ge2 compound is systematically suppressed with the substitution of yttrium for 

terbium.  The transition from the paramagnetic state to the incommensurate 

antiferromagnetic state, TN, decreases linearly with x whereas the transition into the 

commensurate state appears to decrease much more rapidly and in a nonlinear fashion.  

The Weiss temperatures (θ), as determined from fitting the high temperature DC 

susceptibility, also change linearly.  This is true for θ|| and may be true as well for θ⊥ 

though experiments with the crystals better aligned with respect to the field will be 

needed to be sure.  These results are typical of dilution series and demonstrate the scaling 

of the magnetic interactions with the deGennes factor.   

A new feature is the presence of irreversibilities as detected from low field χZFC 

and χFC measurements with respect to temperature.  At high concentrations these 

irreversibilities may arise from domains or structural defects in the crystals, though this 

conjecture has not been verified by experiment.  At lower concentration these 

irreversibilities take on more of the characteristics of frustrated moments, though not yet 

a spin-glass.  In the next chapter these irreversibilities will be shown to become a spin-

glass state in the next set of concentrations. 
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6. IS DILUTE Y1-xTbxNi2Ge2 A SPIN GLASS ? 

6.1. Introduction 

In this section the physical properties of Y1-xTbxNi2Ge2 in lower concentration 

(x<0.375) region will be examined in greater detail.  It is in this dilution range that the 

system displays many of the attributes that are common to other spin glass systems.  

Many of these characteristics were discussed in chapter 2, where the physical interactions 

which these attributes are the consequences of, were discussed.  It will be shown that this 

system does indeed display these experimental signatures of spin glasses for x < 0.375 

and this system will be compared to other well characterized spin glasses.  

 

6.2. Characterization of a Spin Glass 

6.2.1. DC Magnetization below Tf 

In Figure 6.1 the dc susceptibility is shown for Y1-xTbxNi2Ge2 for (a) x = 0.25, (b) 

0.30, and (c) 0.35, measured in an applied field of 50 Oe.  All three data sets display a 

spin-glass-type freezing transition in the dc susceptibility.  The freezing temperature Tf is 

defined as the peak in the zfc magnetization, which for these concentrations are 2.5±0.1 

K, 3.0±0.1 K, and 3.7±0.1 K respectively.  Below Tf, the zfc susceptibility decreases with 

temperature whereas the fc susceptibility is nearly temperature independent.  Figure 

6.1(d) displays this irreversibility in a plot of the difference between zfc and fc data  
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Figure 6.1.  The low temperature dc susceptibility of TbxY1-xNi2Ge2 with (a) x = 0.25, 
(b) x = 0.30, and (c) x = 0.35 in an applied field of 50 Oe for both zero-field-cooled 
(zfc) and field-cooled (fc) histories.  Also shown in (c) are fc data from temperatures of 
2.2, 2.6, 3.0, and 3.5 K following an initial zfc (as described in text). (d) shows the 
difference between fc and zfc data as a percentage of the fc value, from which Tf is 
determined (as described in text).  The solid line represents the 0.5 % criterion. 
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with respect to temperature. In the same manner as in chapter 5, the irreversibility 

temperatures (Tir) were determined by a 0.5% criterion, the temperature where the 

difference between zfc and fc data is 0.5%, and these are similar in value to the Tf’s.  

Figure 6.1(c) also shows the effect on Tb0.35Y0.65Ni2Ge2 of zero-field cooling to 1.8 K, 

warming to T′<Tf in a field of 50 Oe, field cooling back to 1.8 K, and warming again to 

another T′<Tf, repeating this for values of T′ = 2.2 K, 2.6 K, 3.0 K, and 3.5 K.  The 

magnetization of the sample while warming from 1.8 K, after field cooling from T′, is 

nearly temperature independent up to T′ after which it falls on the original curve traced 

out by the zfc magnetization.  This behavior is consistent with the existence of many 

metastable states, as expected for a spin glass (Fisher, 1999; Mydosh, 1993). 

It should be noted that below Tf the zfc magnetization is strongly dependent on 

relaxation processes.  These processes will be looked at in greater detail in following 

paragraphs.  This relaxation is the cause of the kink in the x = 0.35 data set at 2.2 K. This 

temperature is close to the lambda point (T = 2.19 K) in liquid helium where there is a 

change from ordinary liquid helium to liquid helium II, which exhibits superfluidity.  

Temperature control for the magnetometer is not optimized at this point and the time 

duration for the temperature to stabilize here can be quite long.  This results in an 

extended period of time between this measurement and the previous measurement, which 

allows the relaxation processes to make a more prominent contribution than normal.  This 

problem was avoided to some extent in later measurements by skipping past this 

temperature altogether.  
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Figure 6.2 shows the low temperature part of the inverse susceptibility as a 

function of temperature for several concentrations.  For (a) x = 0.40 the inverse 

susceptibility has a positive curvature at low temperatures.  This is consistent with what is 

seen for higher concentrations, for example TbNi2Ge2 seen in Figure 5.1(b) up to the 

transition.  As the concentration is lowered into region IV, this curvature flattens out as in 

(b) x = 0.35, and then curves below the line for smaller concentrations.  This 

demonstrates the antiferromagnetic short range correlations and clustering that is taking 

place well above Tf.  The solid lines in the figure are linear fits to the data for a short 

temperature region (~2 K) just above the region shown for each plot and are drawn to 

make the curvature clearer to see.   

The dc susceptibility (M/H) was studied for a range of applied fields for samples 

containing terbium concentrations of 30 and 35 %.  Figures 6.3(a) and (c) show these 

results at a few selected fields.  In low applied fields, a sharp peak is seen in the zfc 

magnetization, but in higher fields a significant broadening and flattening of this peak 

occurs.  This effect has been seen for other spin glasses (Chamberlin, 1982; Fisher, 

1999).  The non-linearity of the magnetization with applied field close to the spin 

freezing transition is explored in more detail in section 6.2.3.  The irreversibility 

temperature also decreases as the field is increased and shifts from being located at 

temperatures near the peak in the zfc data to temperatures lower than the center of the 

flattened peak.  The features at low temperatures (~2.2 K) are due to the problem 

mentioned earlier and hinders the evaluation of irreversibility temperatures below this 

point. 
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Figure 6.2.  Plots of the low temperature part of the inverse susceptibility (H/M) for (a) 
x = 0.40, (b) x = 0.35, (c) x = 0.30, and (d) x = 0.25 showing the effects of 
antiferromagnetic clustering.  The solid lines are guides to the eye (see text). 
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Figure 6.3. Low-temperature zfc and fc dc magnetization for various applied fields.  (a) 
shows data for x = 0.30 and H = 50, 200, 500, and 1000 Oe, and (c) shows similar data 
for x = 0.35 and H = 50, 400, 1000, and 2000 Oe.  (b) and (d) show the field 
dependence of Tir for x = 0.30 and 0.35 respectively.  Lines in (b) and (d) are fits to Eq 
6.1.  
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The applied magnetic fields are plotted as a function of Tir in (b) and (d). The data 

are well fitted by the de Almeida-Thouless equation, which is derived from mean field 

theory for an Ising spin glass with infinite range random interactions (Binder, 1986), 

( )
2

3

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

f

ir
ir T

TTH α ,      (6.1) 

allowing α and Tf to be fitting parameters.  Fits are shown as solid lines in (b) and (d).  

Values are α = 5.4±0.1 × 103 Oe and Tf = 3.11±0.01 K for x = 0.30 and α = 7.4±.2 ×103 

Oe and Tf = 3.83±.03 K for x = 0.35.  The values of Tf from this fit are similar to the 

values obtained from the peak in the zfc magnetization in an applied field of 50 Oe, 

though a little larger.  It is possible that measurements in lower applied fields, for 

example 20 Oe, would more closely approximate the Tf values produced from this fit.  

This variation of H(Tir) is typical of many spin glass systems, such as Tb-Mg-Zn 

quasicrystals (Fisher, 1999) and FexMn1-xTiO3 (Katori, 1994).   

According to theory, the coefficient α is a function of the averaged exchange 

interaction, J0/J.  In the ideal spin glass the ferromagnetic interactions compete with the 

antiferromagnetic interactions and J0/J = 0.  For this case the theoretical value of α is 

given as 

Jg
Tk

B

fB
th μ

α
3
4

= ,      (6.2) 

where J is the total angular momentum.  For TbxY1-xNi2Ge2, g = 1.5 and  J = 6x.  This 

gives values of αth = 1.98×104 Oe for x = 0.30 and αth = 2.09×104 Oe for x = 0.35.  These 
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values are approximately three times larger than the experimentally found values, which 

is not uncommon and may be due to J0/J ≠ 0 (Katori, 1994). 

6.2.2. AC Magnetic Susceptibility 

The in-phase component χ′ and the out-of-phase component χ′′ of the ac magnetic 

susceptibility were measured from 1.8 to 8 K with no bias field and a 1 Oe ac field with 

frequencies of 1, 10, 100, and 1000 Hz.  The results of this are shown in Figure 6.4 for 

compositions (a) x = 0.25, (b) x = 0.30, and (c) x = 0.35 for χ′.  As was seen in the zfc dc 

magnetization, there is a sharp peak which can be used to define the freezing transition 

temperature, Tf.  The dc magnetization for these samples is also included for comparison, 

but is not intended to be thought of as a zero frequency limit to the ac susceptibility.  In 

Figure 6.4(d) the χ′′ component of ac susceptibility is shown for all three samples for a 

frequency of 1 Hz.   

For all three samples, the peak in χ′ moves to higher temperatures with increasing 

frequency.  From this the fractional relative change in freezing temperature per decade 

change in frequency, ΔTf/(TfΔlog10f) can be calculated, where ΔTf is the change in Tf for 

the given change in frequency (Δlog10f=3 for these data).  For these samples 

ΔTf/(TfΔlog10f) = 0.045, 0.030, and 0.012 for x = 0.25, 0.30, and 0.35 respectively.  These 

values are similar to those of other canonical spin glasses (CuMn ~ 0.005, NiMn ~ 0.18, 

(LaGd)Al2 ~0.06) (Mydosh, 1993) as well as that of the Tb-Mg-Zn quasicrystal (0.049) 

(Fisher, 1999). 
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Figure 6.4.  The real part, χ’, of the zero-field ac susceptibility for different applied 
frequencies from 1 to 1000 Hz (listed in figure) for (a) x = 0.25, (b) x = 0.30, and (c) x = 
0.35.  dc magnetization measured in 50 Oe is also shown for all three samples.  (d) 
shows the imaginary part, χ’’, for all three samples for an applied frequency of 1 Hz.   
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The frequency dependence of Tf for these crystals can be fitted to the Arrhenius 

law for thermal activation, f = f0exp(-Ea/(kBTf)) (Figure 6.5 (a)).  This produces 

unphysically large of the prefactor f0 and the activation energy Ea/kB, which for these 

samples are found to be 1023Hz and 148 K, 1034 Hz and 258 K, and 1081 Hz and 723 K 

for x = 0.25, 0.30, and 0.35 respectively.  These numbers are comparable to those found 

for the Tb-Mg-Zn quasicrystals (Fisher, 1999), but are smaller than some canonical spin 

glasses (Mydosh, 1993).  In general a better description of the experimental data can be 

obtained by using the Vogel-Fulcher law 
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Figure 6.5  (a) shows plots of ln(f) vs 1/Tf, with solid lines showing fits to an activation 
energy analysis (see text).  (b) shows plots of ln(f) as a function of Tf, with solid line 
showing fit to the Vogel-Fulcher law for x = 0.25 (see text).  compositions shown are x 
= 0.25 (squares), x = 0.30 (circles), and x = 0.35 (triangles) 
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data for x = 0.25 (Figure 6.5(b)) were fit in this way and the following values were found: 

ln(f0) = 33.5±8.2,  Ea/kB = 51.8±28.5 K, and T0 = 1.2±.5 K.  These are slightly more 

reasonable values than those found above, but the error bars involved are rather large and 

very little can actually be determined from these values.  For the samples x = 0.30 and x 

= 0.35 it proved too difficult to fit the data in this way.  The change in Tf is small (ΔTf < 

0.5 K) and comparable to the uncertainty in the measurements (~0.1 K), that no stable 

fitting solution could be found.  Much finer temperature control and a larger frequency 

range would be required to overcome this difficulty.   

The out-of-phase component χ′′(Figure 6.4(d)) also behaves in a manner 

consistent with other spin glasses (Binder, 1986).  Above Tf χ′′ is vanishingly small but is 

nonzero below Tf.  This implies that there are relaxation processes that are affecting the 

measurement.  As in other spin glasses, the maximum slope of χ′′ corresponds to the peak 

in χ′, and it also increases in temperature as the frequency increases.   

6.2.3. Non-Linear Susceptibility 

Up to this point, these samples display the hallmarks of spin-glass behavior.  It is 

possible though that this behavior may arise from a blocking of superparamagnetic 

clusters (Binder, 1986).  An important measurement that is useful in discerning between 

these two cases is to observe the temperature dependence of the third-order magnetic 

susceptibility χ3.  

The nonlinear susceptibility can be defined in terms of the ac susceptibility χ and 

applied magnetic field H as  
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where χ1 is the first-order or linear susceptibility, χ3 is the third-order and so on.  There 

are other slightly different ways of defining the nonlinear susceptibility and in measuring 

it, which have been covered in Chapter 2. 

In order to determine χ3, ac susceptibility as a function of applied field (H) were 

performed on Tb0.30Y0.70Ni2Ge2 and Tb0.35Y0.65Ni2Ge2 with an ac field of 3 Oe and a 

frequency of 1.5 Hz between 2.5 and 7 K and bias fields (H) between –400 Oe and 400 

Oe.  Examples of χ′(H) for temperatures just greater than Tf are shown in Figure 6.6(a) 

for x = 0.30 and (b) for x = 0.35.  It is clear that parabolas with higher order corrections 

should give a good account of the data.  Fits to the data were performed using the first 
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Figure 6.6  (a) shows the real part, χ′, of the ac susceptibility as a function of field for x 
= 0.30 at T = 3.2 K (squares), 3.4 K (circles), and 3.5 K (triangles). (b) shows χ′(H) for 
x = 0.35 at T = 3.8 K (squares), 4.1 K (circles), and 4.2 K (triangles). The solid line 
shows the fit of Eq 6.4 with terms higher than H2 suppressed and dashed line shows fit 
with the higher terms for (a) T = 3.2 K and (b) T = 3.8 K.  
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five terms in Equation. 6.4 for x = 0.30 and the first four terms for x = 0.35 and 

modifying H to H + h, where h is a correction term to account for any residual or 

persistent magnetic fields in the magnetometer. The effects of these small persistent fields 

have previously been seen in the low field magnetization measurements as mentioned in 

Chapter 3.  The results of fitting for x = 0.30 at T =3.2 K and for x = 0.35 at T = 3.8 K are 

shown in Table 6.1.  Though small, the terms proportional to H4 and H6 and H8 do 

contribute significantly to the measurement.  This can be seen in the solid lines in both 

Figure 6.6(a) and (b), which are fits to the data with terms higher than χ3 suppressed to 

zero and the dashed lines which are fits that include the higher terms.  Clearly, the higher 

terms are necessary.   

Figure 6.7 shows the temperature dependence of each term in the nonlinear 

susceptibility for (a) x = 0.30 and (b) x = 0.35.  Tf was determined by the peak in χ1 for 

each of these samples and were found to be Tf = 3.15 for x = 0.30 and Tf = 3.8 for x = 

0.35.  These values are about 0.1 K higher than those found for dc measurements but 

Table 6.1.  Values of the nonlinear susceptibility for concentrations (x) and 
temperatures as listed.  χ9 for x = 0.35 was to small to be measured. 
 
 

 x = 0.30, T = 3.2 K x = 0.35, T = 3.8 K 

 1.871+0.001 χ1 (μB/mole-Tb)  2.334±.001 
χ3 (μB/mole-Tb Oe2) (1.488±0.02)×10-6 (3.51±0.13)×10-7

χ5 (μB/mole-Tb Oe4) (2.63±0.12)×10-11 (3.44±0.37)×10-12

χ7 (μB/mole-Tb Oe6) (2.92±0.22)×10-16 (1.66±0.28)×10-17

χ9 (μB/mole-Tb Oe8) (1.26±0.12)×10-21 ---------------------- 
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Figure 6.7.  Nonlinear susceptibility in χ′(H) for (a) x = 0.30 and (b) x = 0.35 as a 
function of reduced temperature T/Tf.  Lines are drawn to guide the eye.   
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recall that Tf increases with frequency. The narrowness of the peak in χ3 near Tf is strong  

evidence that the cusps seen in the dc magnetization and in χ′ do correspond to a spin-

glass freezing and not to the blocking of superparamagnetic clusters as was seen in Figure 

2.12 (Bitoh, 1996).   

According to theory, the nonlinear susceptibility above Tf should exhibit the 

critical divergence and exponents of a spin glass (Mydosh, 1993).  Unfortunately the 

critical components cannot be extracted from this data.  The noise present in χ5 and χ7 for 

x = 0.35 may be due to the small sample used, giving a significantly smaller signal to fit, 

whereas the x = 0.30 sample was much bigger.  It may also be possible that the x = 0.35 

concentration is too close to the arbitrarily chosen boundary of the crossover region 

(0.375 < x < 0.45) and other unknown interactions are occurring. 

Figure 6.8 shows a comparison of the temperature dependence χ3 scaled as T/Tf 

for concentrations x = 0.30 and x = 0.35 alongside χ3 for Tb-Mg-Zn and Ho-Mg-Zn 

quasicrystals similarly scaled, measured by an ac technique (Fisher, 1999).The 

similarities in the width of these peaks, especially for x = 0.30, demonstrates that these 

systems do compare well with other known spin glass systems.  The slightly broader 

width in the x = 0.35 sample may again be an indication of being too close to the 

crossover region.  

6.2.4. Relaxation and Remanence Effects in the DC Magnetization 

Another feature common to spin glass systems is the existence of relaxation 

processes below the freezing temperature that cause the magnetization to have a time 

dependence.  This has already been seen to some extant in the features that appear at 2.2 
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K for the reasons mentioned previously.  These relaxation process also give rise to the 

nonzero χ′′ below Tf.  These relaxation processes are an extensive problem and are 

beyond the scope of this work, but some initial measurements have been made to 

demonstrate their properties.   

Figure 6.9(a) shows the time dependence of the magnetization for both zfc and fc 

histories in a field of 50 Oe at 2 K for terbium concentrations of x = 0.30 and (b) shows 

time dependence of the thermoremanent magnetization (TRM) for x = 0.30.  For the zfc 

data, the sample was cooled to 2 K and then the field of 50 Oe was applied immediately 

after the temperature was stabilized.  For the fc data a field of 50 Oe was applied at 30 K 
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Figure 6.8.  Comparison of χ3 for four different spin glass systems. (a) and (b) are from 
this study for x = 0.30 and 0.35and (c) and (d) are from (Fisher, 1999).   
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and then the sample was cooled to 2 K. The TRM followed the fc history to 2 K and the 

field returned to zero.  At the end of the run the sample was heated to 4.2 K, which is in 

the paramagnetic region for this sample and the magnetization drops immediately to its 

saturation value.  This was done because of the already mentioned difficulties of 

measuring in a small field.  If the applied field is not actually zero, then the TRM will not 

relax to zero but rather to nonzero value determined by the small residual field.  By 

heating to above the freezing temperature and into the paramagnetic region, the 

magnetization due to this small residual field may be determined.   

Figure 6.9.  (a) Time dependence of the zfc (squares) and fc (circles) magnetization in 
an applied field of 50 Oe.  (b)  Time dependence of the TRM (triangles) after cooling in 
an applied field of 50 Oe.  Dashed line shows fit to Equation 6.5 with values from 
column 4 of Table 6.2 
 
 

Measurements using the SQUID magnetometer take on the order of 1 minute, and 

the applied field takes about 1 minute to stabilize.  Therefore any relaxation processes 

with time constants on the order of 1 minute or less cannot be observed with this 
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particular technique.  Still, the data shown in Figure 6.9 demonstrate relaxation processes 

with time constants greater than the experimental resolution.  In (a), it is noticed that the 

zfc and fc data, though relaxing towards each other, do not seem to be saturating to the 

same value, producing a large gap between the two sets of data.  Similar results were 

obtained for Tb-Mg-Zn quasicrystals.  This data may imply that the potential energy 

barriers between the closely spaced energy levels of the system are rather high (Fisher, 

1999).  

The TRM data seen in (b) was fitted by a modified stretched exponential function  

( ) ( ){ } ( ) δτ
β

++−= tStAtMTRM lnexp ,   (6.5) 

where the first term is the stretched exponential function and the second term is an 

additional logarithmic decay term, and δ is the magnetization leftover after heating above 

Tf (Nordblad, 1986).  

The data was fit with S = 0, in order to fit the data to a pure stretched exponential, 

and with S as a free parameter in order to see if the data is better described with or 

without the second term.  For unknown reasons, the data is very difficult to fit accurately.  

Since measurements with the magnetometer take on the order of 1 minute, all fits were 

taken at times above 200 seconds in order to avoid the potential error in the first few data 

points.  Fits to the data taken over different time intervals resulted in different values for 

the parameters.  This is seen in Table 6.2 where the results of fitting over time intervals of 

200 <t< 30,000 seconds and of 200 <t< 60,000 seconds are shown for fits with and 

without S.  The results for the two fits with S = 0 show large variations in all the 

parameters, especially in τ which changes from 1582 to 4.5 seconds.  The results for the 
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Table 6.2.  Values of the parameters in equation 6.5..  Column (1) is stretched 
exponential for time interval 200-30000 seconds, column (2) is stretched exponential for 
time interval of 200-60000 seconds, column (3) is modified stretched exponential for 
time interval 200 – 30000 seconds, column (4) is modified stretched exponential for 
time interval 200-60000 seconds. 
 

 1 2 3 4 
A  (10-3 μB/mole-Tb)       4.06      6.19        2.59        2.81  

1582      4.5  3038 τ   (seconds) 2907 
β       0.084     0.060       0.196       0.170 
S  (10-5 μB/mole-Tb)       0     0       5.73        4.80 
δ  (10-4 μB/mole-Tb)       4.122     4.122       4.122 

two fits with S a free parameter also show some variation between them but not so 

severe.  This indicates that the data is better fit with the both terms rather than just the 

stretched exponential, which has also been seen for other spin glasses, such as CuMn 

(Nordblad, 1986). 

      4.122 
 
 

The fit value of β (determined with S≠0) of β = 0.33, which was found for CuMn 

with a time interval of 1000 seconds by measuring the relaxation of the IRM as a function 

of time (Chamberlin, 1984), but is similar to the value found for Tb-Mg-Zn (0.18), which 

was determined form a zfc measurement similar to that seen in Figure 6.9(a) (Fisher, 

1999).  In any case, the nonunitary value of β indicates that there are several relaxation 

processes involved, and is typical for spin glasses (Mydosh, 1993). 

A study of the isothermal remanent magnetization (IRM) and the thermoremanent 

magnetization (TRM) was performed on both x = 0.30 and x = 0.35 concentrations.  The 

IRM was performed by zero-field cooling the sample from 30 K to 2 K, immediately 

applying a field H, and then immediately removing the field and measuring the remanent  
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magnetization.  The TRM was measured by applying a field H at 30 K, cooling to 2 K, 

then removing the field and immediately measuring the remanent magnetization.  As 

mentioned before, the SQUID magnetometer takes on the order of 1 minute to perform 

each of these steps.  This is significantly shorter than the τ observed in the stretched 

exponential in the preceding paragraphs, but faster relaxation processes cannot be 

determined.  Figure 6.10(a) shows the IRM and TRM of x = 0.30.  The IRM and TRM 

appear to reach a common saturation value of about 0.005 μB/Tb for fields greater than 4  

kOe.  Similarly for x = 0.35 (b), the two data sets seem to saturate at 0.01 μB/Tb for 

applied fields greater than 6 kOe.  The IRM and TRM of both of these samples are 

similar in form to those of other spin glasses (Mydosh, 1993; Fisher, 1999).  The slight 

differences in shape between these two samples, particularly for the IRM curves, may be 
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Figure 6.10.  IRM (filled) and TRM (open) of x=30 (squares) and x = 35 (circles) 
measured at 2 K.  Precise field history and timing as described in text.  Lines are drawn 
to guide the eye 
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due to the fact that 2 K is closer to the spin freezing temperature of the x = 0.30 sample 

(Tf = 3.0 K) than it is for the x = 0.35 sample (Tf = 3.8 K) and it has been shown that the 

relaxation processes are temperature dependent and relaxation occurs at a faster rate as Tf 

is approached (Chamberlin, 1984).   

6.2.5. Specific Heat and Resistivity 

Low temperature specific heat measurements were performed on both the x = 0.30 

and x = 0.35 samples.  The magnetic components to the specific heat were found by 

subtracting from the total specific heat the specific heat of lanthanum and the specific 

heat of yttrium in the same ratio as terbium and yttrium in the sample, 

Cpmag = CpY(1-x)Tb(x)Ni2Ge2 – (1-x)CpYNi2Ge2 – (x)CpLaNi2Ge2,                               (6.6) 

as performed in chapter 5.  This magnetic specific heat was then extrapolated to T = 0 K 

using a T3/2 dependence, which is thought to be characteristic for spin glass systems at 

very low temperatures (Caudron, 1981; Thomson, 1981). This was done so as to account 

for the entropy below 2 K.  These results are shown in Figure 6.11 (a) and (c).  The 

arrows point out Tf for each system.  Looking at (a) x = 0.30, many features that are 

commonly seen in spin glasses are apparent.  There is a broad maximum located at 3.8 K, 

which is about 1.26 Tf.  This is in the range of 1.2 – 1.4 Tf which is typical for spin 

glasses.  There is also a gradual decline in the specific heat, which is roughly fit by a 1/T 

dependence for increasing temperature, which is shown by the solid line in (a).  This is 

similar to what is seen in CuMn.  This existence of this peak and tail shows that the 

formation of magnetic clusters or short-range order is taking place well above Tf.  The  
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Figure 6.11. Magnetic contribution of the specific heat and entropy as a function of 
temperature for: (a) and (b) x = 0.30 and for (c) & (d) x = 0.35.  Arrows indicate the 
spin freezing temperatures. Solid lines in (b) and (d) indicate value of Rln13 which is 
the theoretical total magnetic entropy for Tb3+ ion and Rln2 which is theoretical entropy 
of a degenerate two level CEF ground state. 
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spin glass state is then formed from these clusters.  The gradual tail also shows that the 

short-range order persists up to higher temperatures, which is due to the relatively strong 

and long-range RKKY interaction.  The fact that no sharp feature is seen at Tf is another 

feature common to spin glasses.  Below Tf,  there is an approximately linear dependence 

to the specific heat, which is the low temperature signature of a spin glass state (Mydosh, 

1993).  

The magnetic contribution to the entropy is shown in Figure 6.11(b).  At 10 K 

there is a shoulder in the entropy at about Rln2, which is the entropy associated with a 

ground state doublet, lending confirmation to our assertion that the ground state is a 

doublet or psuedodoublet.  By Tf only about 55 % of this theoretical entropy is present.  

This is again typical of spin glasses (Chernikov, 2000).  In the same manner seen in 

previous specific heat plots, the high temperature specific heat does not reach its total 

value of Rln13 by 50 K, so other Shottky-type anomalies may exist at higher 

temperatures (Bud’ko, 1999).   

Many of these same features are seen in x = 0.35, such as the low amount of 

entropy present at Tf, comparable to that of the x = 0.30.  The single greatest difference is 

that the peak in the specific heat occurs at a temperature which is very close to Tf (~3.8 

K).  Another difference is that the specific heat above the peak falls off with an 

approximately T-1.7 dependence rather than a 1/T dependence.  This is irregular for a spin 

glass and gives added weight to the previous indications (χ3) that the composition x = 

0.35 is not a particularly good example of a spin glass and is probably too close to the III-

IV boundary in Figure 5.7.   
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Plots of the resistivity for (a) x = 0.30 and (b) x = 0.35 are shown in Figure 6.12.  

The insets show that, similar to all the other members of this series, the RRR~4.  No 

sharp features exist at or near Tf for either compound.  This is normal for spin glasses 

considering that even in the frozen state there is spin disorder.  Because of the very low 

RRR and the normal 10 % error in the absolute value of the resistivities (see Chapter 4), 

no quantitative analysis could be performed on these samples, such as finding Δρ(T), the 

difference between ρ of the spin glass and the ρ of pure YNi2Ge2, which could be 

considered the magnetic contribution to the resistivity.  The upturn at low temperatures 

was also seen for the concentration x = 0.45 (see Figure 5.19). This increase may be due 

the formation of clusters and short range correlations of the terbium moments before 

entering into the spin glass state. 
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Figure 6.12.  Low temperature resistivity measurements for (a) x =0.30 and (b) x = 0.35. 
Insets show full temperature dependence to illustrate that RRR ~ 4 for both samples.  
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6.3. Conclusion 

In this chapter several measurements have been performed in order to test the 

irreversibilities seen in the zfc and fc dc magnetization at low temperatures and to 

determine whether this is a spin glass state or not.  It should be clear that for terbium 

concentrations between x = 0.25 and 0.35 this system is a good Ising, metallic, RKKY 

coupled spin glass.  These systems conform to many of the experimental signatures that 

are displayed by other more well-known spin glass systems.  Of the three concentrations 

studied in this chapter, the sample with x = 0.30 may be considered the better sample.  

From χ3 and specific heat measurements the x = 0.35 sample has irregularities that affect 

its quality as a spin glass, and the x = 0.25 sample has a freezing transition (Tf = 2.5 K) 

that is too low to allow several of the critical measurements to be  easily performed.  It 

should be possible to explore the various theoretical questions that have arisen in this 

field with this system.  In order to do so will require more detailed measurements at lower 

temperatures and more sensitive equipment than has been used in this study. 
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7. CONCLUSIONS 

The purpose of this work was to study the response of the magnetization, specific 

heat and resistivity of the site diluted Ising Y1-xTbxNi2Ge2 system to changes in the 

concentration x.  This was done in the hopes that a good Ising spin glass system could be 

found.  There is much theoretical interest in Ising spin glasses, and in particular their 

response to an applied transverse field as T approaches 0 K.  Recent investigations into 

quantum phase transitions in Ising spin glasses were performed on members of the 

dilution series LiHoxY1-xF4 (Rosenbaum, 1991).  These crystals are a site-diluted and 

isostructural derivative of the dipolar-coupled, insulating, Ising ferromagnet LiHoF4 

which has a Tc of 1.53 K.  The spin glass transition temperature for the concentration x = 

0.167 is Tg = 0.13 K.  In contrast, the Y1-xTbxNi2Ge2 system is a metallic, RKKY 

coupled, Ising antiferromagnet with TbNi2Ge2 having a TN = 16.7 K. 

Large single crystals of Y1-xTbxNi2Ge2 were grown from a psuedoternary using a 

self-flux technique.  A concern in dilution series such as this, is deviation of actual 

concentrations of the constituents from the initial nominal concentrations.  The actual 

concentrations were determined from high temperature Curie-Weiss fits and by electron 

microprobe analysis.  Both measurements confirm that deviations from the nominal 

concentration are small across the series.   

Investigations into the magnetic characteristics of the dilution series as a function 

of the concentration x reveal four regions in the T-x phase diagram.  At the large x, there 

are two antiferromagnetic transitions, as x is decreased the lower transition fades away 
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and the upper transition continues to decreases in temperature in a linearly with x. It 

should also be noted that significant differences begin to emerge between zfc and fc 

susceptibilities measured in low (50 Oe) applied fields.  These irreversibilities become 

stronger and their onset temperature (Tir) increases as the concentration decreases.  At 

intermediate values of x there is a region which shows a mixed behavior, demonstrating a 

well defined ordering temperature characteristic of long-range antiferromagnetic order 

and the strong irreversibilities that are signatures of spin glass systems.  In the region of 

0.25<x<0.35, the system has lost its long-range order and spin-glass-like features are 

prominent.  As x is changed, the Weiss temperatures determined from Curie-Weiss fits at 

high temperature change in a linear fashion, demonstrating the scaling of the magnetic 

interactions with concentration and therefore with the de Gennes factor. 

The region displaying a spin glass nature was looked at in more detail.  Results of 

dc susceptibility revealed the formation of clusters at temperatures above the freezing 

temperature, as well as the irreversibilities due to temperature and field histories.  It was 

also seen that these irreversibilities, characterized by the onset temperature, Tir, follow 

the AT line theoretically predicted from a mean field theory for Ising spin glasses.  From 

ac susceptibility measurements further similarities with other accepted spin glasses were 

seen.  The nonlinear susceptibility was studied at temperatures near Tf and a sharp feature 

was seen, which is again typical of spin glasses.  Preliminary investigations were 

undertaken to demonstrate the time dependent nature of the spin glass state at low 

temperature.  Finally, specific heat and resistivity measurements were taken which again 

demonstrates the onset of clustering well above Tf.  
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From these measurements, the conclusion must be drawn that a clear Ising spin 

glass state does exist in this system.  A concentration of 0.25<x<0.30 would probably be 

the best sample, having strong spin glass characteristics combined with an easily 

accessible transition temperature.  Now that a good, metallic, RKKY coupled, Ising spin 

glass has been found, the next step will be to apply a transverse field.  In order to study 

the quantum nature of this system, lower temperatures will be needed.  At these lower 

temperatures problems may arise due to the CEF splitting of the ground state.  It is 

thought that the final ground state might be two closely spaced singlets.  This means that 

at low enough temperature the populations of these states will no longer be equally 

populated and as the upper state empties into the lower state changes in the magnetic 

properties will occur.  The determination of the exact ground state will require specific 

heat and neutron diffraction measurements at very low temperature (T<1 K).  It would 

also be of interest to study the nature of irreversibilities that emerge at high 

concentrations. 
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